CHAPTER = 4 ROTATIONAL AND CIRCULAR MOTION

MULTIPLE CHOICE QUESTIONS (SECTION-1 BOOK 11)

1.	One radian is about: (a) 25°	(b) 37°
	(c) 45°	(d) 57°
2.	Wheel turns with constant angular speed then: (a) each point on its rim moves with constant velocity (b) each point on its rim moves with constant acceleration (c) the wheel turns through equal angles in equal times (d) the angle through which the wheel turns in each second increases as time goes on 	
3.	The rotational inertia of a wheel about its a (a) diameter (c) distribution of mass	axle does not depend upon its: (b) mass (d) speed of rotation
4.	A force with at given magnitude is to be applied to a wheel. The torque can be maximized by: (a) applying the force near the axle, radially outward from the axle. (b) applying the force near the rim, radially outward. (c) applying the force near the axle, parallel to a tangent to the wheel. (d) applying the force at the rim, tangent to the rim. 	
5.	An object rotating about a fixed axis, I is it Its: (a) is the definition of torque.	is rotational inertia and α is its angular acceleration. (b) is the definition of rotational inertia.
	(c) is definition of angular acceleration.	(d) follows directly from Newton's second law.
6.	The angular momentum vector of Earth about its rotation axis, due to its daily rotation is, directed:	
	(a) tangent to the equator towards east (c) north	(b) tangent to the equator towards the west (d) towards the sun
7.	A stone of 2 kg is tied to a 0.50 m long string and swung around a circle at constant angular velocity of 12 rad/s. The net torque on the stone about the center of the circle is:	
	(a) 0 N.m (c) 12 N.m	(b) 6 N.m (d) 72 N.m
8.	A man, with his arms at his sides, is spinning on a light frictionless turntable. When he extends his arms:	
	(a) his angular velocity increases (c) his rotational inertia decreases	(b) his angular velocity remains same(d) his angular momentum remains the same
9.	A space station revolves around the earth a is the net force on an astronaut at rest insic (a) equal to her weight on earth (c) less than half her weight on earth	as a satellite, 100 km above the Earth's surface. Wha de the space station? (b) a little less than her weight on earth (d) zero (she is weightless)
10		
10.	If the external torque acting on a body is zo (a) angular momentum is zero (c) angular acceleration is maximum	(d) rotational notion is maximum

EXAMS PRACTICE MULTIPLE CHOICE QUESTIONS

- 1. An angle subtended at its centre by an arc whose length is equal to its radius is:
 - (a) 37.3°

(b) 47.3°

(c) 57.3°

- (d) 67.3°
- The platter of the hard drive of a computer' rotates at 7300 rpm. What is the angular velocity of the platter?
 - (a) 764.5 rad s⁻¹

(b) 647.5 rad s^{-1}

(c) 7300 rad s⁻¹

- (d) 121.6 rad s⁻¹
- 3. A body moving along a circular path with an increasing speed possesses.
 - (a) Tangential acceleration only
 - (b) Both tangential and centripetal acceleration
 - (c) zero acceleration
 - (d) Centripetal acceleration only
- 4. Centripetal force is also called:
 - (a) Centrifugal force

(b) Centre-seeking force

(c) Tangential force

- (d) None of these
- 5. If r is the radius of the circular path of a particle, its linear acceleration and angular acceleration are related by:
 - (a) $\vec{a} = \vec{\alpha} \times \vec{r}$

(a) $\vec{a} = \vec{r} \times \vec{\alpha}$

(a) $\vec{\alpha} = \vec{a} \times \vec{r}$

- (a) $\vec{\alpha} + \vec{a}\vec{r}$
- 6. When a body moves with a constant speed in a circle:
 - (a) its velocity is changing

- (b) its acceleration is zero
- (c) its acceleration is increasing
- (d) its velocity is uniform
- 7. The angle between centripetal acceleration and tangential acceleration is:
 - (a) 0°

(b) 90°

(c) 180°

- (d) 45°
- 8. A wheel is revolving at a steady rate of 120 rev / min. Its angular velocity is
 - (a) $2 \pi \text{ rad / s}$

(b) $4 \pi \text{ rad /s}$

(c) $6 \pi \text{ rad } / \text{ s}$

- (d) $8 \pi \text{ rad / s}$
- 9. Which equation represents the period of circular motion?
 - (a) $T = \frac{\pi}{\omega}$

(b) $T = \frac{2\pi}{\omega}$

(c) $T = \frac{\pi}{\omega^2}$

(d) $T = \frac{2\pi}{\omega^2}$

