CHAPTER = 11 OSCILLATIONS MULTIPLE CHOICE QUESTIONS (BOOK XI)

1.	Iwo simple pendulums A and B wit	G .	1
	vibrations, but the mass of A is twice	-	
	energies are E_A and E_s respectively.		
	a) T_A =Ts and E_A > Es		
2	c) $T_A > T_S$ and $E_A < E_S$	d) $TA = Ts$ and $E_A <$	ES
2.	In order to double the period of a sim		h o assadussalad
	a) Its length should be doubled		
2	c) The mass should be doubled		
3.	A simple harmonic oscillator has amp	_	
	a) $\frac{4A}{T}$ b) $\frac{2A}{T}$	c) $\frac{nn}{T}$	d) $\frac{2\pi A}{T}$
4.	A spring attached by a load of weight	1	1
	divided into four equal parts and the		
	the new period is:	1	1 /
	a) $\frac{T}{4}$ b) 2T	T	4) 4T
	a) $\frac{1}{4}$ b) 21	$\frac{c}{2}$	d) 4T
5.	The total energy of a particle executin	g simple harmonic motic	on is proportional to:
	a) frequency of oscillation	b) maximum velocity of	f motion
	c) amplitude of motion	/ 1	
6.	A child swinging on a swing in sitti	ng position, stands up,	then the time period of
	the swing will:		
	a) Increase		
	b) decrease		
	c) remains the same		
_	d) increases if the child is long and do		
7.	If a body oscillates at the angu	llar frequency ω_d of the	he driving force,
	then the oscillations are called:	1) 6 1 1 11 11	
	a) Forced oscillations	b) Coupled oscillations	
0		d) Maintained oscillation	
8.	A simple harmonic oscillator with	•	••
	with a driving frequency ω_d t. The R		•
	a) $\omega_N > \omega_d$	b) $\omega_N < \omega_d$	
0	c) $\omega_N = \omega_d$	d) $\omega_N \approx \omega_d$	
9.	In vehicles, shock absorber reduced th	2	
	a) The shock absorber is the application	-	S.
	b) Damping effect is due to the fraction		
	c) Shock absorbers in vehicles redu	iced jerk	
10	d) All of these	. O.4	
10.	A heavily damped system has a fairly		nanay anank
	a) An acceleration time graph	b) An amplitude freq	
	c) Velocity time graph	d) Distance-time grap	11

CHAPTER = 11 OSCILLATIONS

c) quadrupled

EXAMS PRACTICE MULTIPLE CHOICE QUESTIONS

1.	The frequency of a simple pendulum is given by:		
	a) $f = 2\pi \sqrt{\frac{g}{L}}$	b) $f = 2\pi \sqrt{\frac{L}{g}}$ d) $f = \frac{1}{2\pi} \sqrt{\frac{g}{L}}$	
	a) $f = 2\pi \sqrt{\frac{g}{L}}$ c) $f = \frac{1}{2\pi} \sqrt{\frac{L}{g}}$	d) $f = \frac{1}{2\pi} \sqrt{\frac{g}{L}}$	
2	•	spring is increases to 4 times, the period of	
	vibration of the body will be:		
	a) 4 times	b) 2 times	
	c) $\sqrt{2}$ times	d) same as before	
3	Which of the following variables has	zero value at the extreme position in SHM?	
	a) Acceleration	b) Speed	
	c) Displacement	d) Angular frequency	
4	A particle is undergoing SHM with ar	particle is undergoing SHM with amplitude 10cm. The maximum speed it achieves	
	is 1m/s. Find the time it takes to reach	from the mean position to half the amplitude.	
	a) $\pi/60$ s	b) $\pi/30 \text{ s}$	
	c) $\pi/15 \text{ s}$	d) $\pi/40 \text{ s}$	
5 In SHM, what is the phase difference between velocity and acceler		between velocity and acceleration?	
	a) 0	b) π	
	c) π/2	d) $\pi/3$	
6 At resonance condition the amplitude of the driven harmonic oscillator		of the driven harmonic oscillator is	
	a) zero	b) small but non-zero	
	c) moderate	d) maximum	
7	Resonance will be a sharp pendulum with		
	a) Pith Bob	b) Iron Bob	
	c) wood bob	d) same for all bobs	
8	Acceleration for the simple harmonic oscillator is zero at		
	a) extreme position	b) mean position	
	c) both A and B	d) none of the above	
9	Acceleration for the driven harmonic oscillator is zero at		
	a) extreme position	b) mean position	
	c) both A and B	d) none of the above	
10	Damping—— the period of the oscil		
	a) increases	b) decreases	
	c) not effect	b) may increase or decrease	
11		lulum, the length of the string should be	
	a) halved	b) doubled	

d) 1/4 of its length

12	The period of a simple pendulum is:		
	a) 1-second	b) 2 seconds	
12	c) 4 seconds	d) 8 seconds	
13	maximum at:	simple harmonic motion. Its potential energy is	
	a) Extreme position	b) Mean position	
	(c) At any other point along the path	(c) All of these	
14	The acceleration of free fall on the moon is 1/6 of that on the earth. What would be the period on the moon of a simple pendulum with a period of 1 sec on Earth?		
	a) 1/6 seconds	b) $1/\sqrt{6}$ seconds	
	c) $\sqrt{6}$ seconds	d) 6 seconds	
15	The frequency of oscillation of a simple pendulum depends upon:		
	a) Mass of the bob	b) Amplitude of vibration	
	c) Length of pendulum	d) None of them	
16	A spring-mass system performs simple harmonic motion with the period 'T'. If we double the mass of the bob, the new period will be:		
	a) T	b) 2T	
	c) 1.414T	d) 0.707T	
17	An object is executing SHM. Its kinetic energy is maximum at its:		
	a) Mean position	b) Extreme position	
	c) At any point along the path	c) None of them	
18	If the bob of a simple pendulum is replaced by another bob of double mass but of the same size, its period:		
	a) Increases	b) Decreases	
	c) Remain the same	d) Become infinity	
19	The value of elastic restoring force in the case of a spring is:		
	a) Kx	b) –Kx	
	c) 1/2 Kx	d) 1/2 Kx ²	
20.	The frequency of a second's pendulum is:		
	a) 1 Hz	b) 2 Hz	
	c) 0.5 Hz	d) 4 Hz	
21	If the mass of a body suspended from a spring is increased to 4 times, the period of vibration of the body will be:		
	a) 4 times	b) 2 times	
	c) $\sqrt{2}$ times	c) Same as above	
22	A simple pendulum has period T. The bob is given a negative charge and the surface		
	below it is given a positive charge. The a) Less than T	b) Greater than T	
	c) Equal to T	d) Infinite	

23	In a second pendulum, the mass of the bob is 30 gm. If it is replaced by 90 gm me Then its period will be		
	a) 1 sec	b) 2 sec	
	c) 4 sec	c) 3 sec	
24	Two simple pendulums of length 5 m and 20 m respectively are given small linear displacement in one direction simultaneously. The period of both pendulums will be:		
	a) 5 sec and 20-sec	b) 4.5 sec and 9 sec	
	c) 10 sec and 5-sec	c) 3 sec and 5-sec	
25	A simple pendulum of length L has a brass bob attached at its lower end. Its period is T. If a steel bob of the same size, having density x times that of brass, replaces the brass bob and its length is changed so that the period becomes 2T, then the new length is		
	a) L	b) 2L	
	c) 3 L	c) 4 L	
26	If the length of the second's pendulum lose per day	e length of the second's pendulum is decreased by 2%, how many seconds it will per day	
	a) 3927 sec	b) 864 sec	
	c) 3727 sec	c) 3427 sec	
27 As the amplitude of resonant vibrations decreases, the d		ns decreases, the degree of damping	
	a) increases	b) remains the same	
	c) decreases	c) All of these	
28	For a resonating system it should osci	llate.	
	a) bound	b) only for some time	
	c) freely	c) for infinite time	
What happens to the energy of a particle, in SHM, with time in the predamping forces?		cle, in SHM, with time in the presence of	
	a) Stays constant	b) Decreases linearly	
	c) Decreases exponentially	d) Decreases cubically	
30	A particle is executing SHM and currently going towards the amplitude. If it is at A/2, what is the relation between the direction of velocity and acceleration? a) Both vectors point towards the amplitude		
	b) Velocity is towards amplitude & acceleration is towards mean position		
	c) Velocity is towards the mean position & acceleration is towards the amplitude		
	d) Both vectors point towards the mean position		