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VIBRATORY MOTION
When a body moves to and fro about its mean position, it is said to possess vibratory

or oscillatory motion.

Examples
Some examples are:

1. The motion of the sitar’s string
2. Prongs of a tuning fork
3. The motion of atoms in a solid etc.
PERIODIC MOTION
A motion, which repeats itself in equal intervals of time, is called periodic motion.

Example
Some examples are:

1. The motion of a simple pendulum 2. The motion mass-spring system. etc.
SIMPLE HARMONIC MOTION
DEFINITION:

An object moves with simple harmonic motion whenever its acceleration is directly
proportional to its displacement from some equilibrium position and is oppositely
directed or directed towards an equilibrium position is known as simple harmonic
motion.

MATHEMATICAL EXPRESSION:

aa-X
Where , a is an acceleration
X is a displacement from the equilibrium position,

A negative sign shows the acceleration is directed toward the equilibrium
position

Example
Some examples of SHM are

1) The motion of simple pendulum,
2) The motion of projection of a body moving in a circle etc.
CHARACTERISTICS AND CONDITIONS OF SIMPLE HARMONIC MOTION

1) There must be a restoring force, directly proportional to displacement.
2) The acceleration should be directly proportional to displacement.

3) The acceleration should be directed toward mean position.

4) The system should be frictionless.

5) The body must have inertia.

6) Total energy of the vibrating body should be constant.



MOTION UNDER ELASTIC RESTORING FORCE
A mass attached to an ideal massless spring and free to move over a frictionless
horizontal surface performs simple harmonic motion.

Proof:

Consider an object of mass ‘m’ attached to an ideal spring placed on a frictionless
horizontal surface. If the spring is stretched or compressed a small distance x from its
upstretched position and then released it exerted force on the object obey the equation.

(Applied force) = kx.

Where x is the displacement of the object from its equilibrium position and k is the
positive constant called the spring constant.

Restoring force = - (Applied force)

F =-k (Hooke’s law)
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The negative sign in the above equation significance that the force exerted by the spring
is always directed opposite the displacement of the object. We can use Newton’s second
law of motion to calculate the acceleration of the object.

ma =-kx [F=ma]

k . . : :
— =1is constant during the motion of the object.

m
Then, a = - (constant) x
Or ada-X

This is an equation representing simple harmonic motion (SHM), which shows that a mass
attached to a spring performs S H M,



MOTION OF A MASS ATTACHED TO A SPRING:
An oscillating mass on a vertical spring also exhibits SHM.
Suppose an object of mass m and weight mg is hung from the spring with spring constant k.

The spring is stretched downward under gravity to a distance d from its relaxed point A and
settled at O the equilibrium position.
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Equilibrium position

Taking the y-axis in an upward direction the net force acting on mass at equilibrium is
Fhet = spring force — weight

Fphet = kd — mg
0 =kd —mg
mg =kd ........ (1)

if the upward direction of y is taken as positive then the net force acting on the mass at
Bis
Fhet = spring force — weight

Fret = k(d —y) — mg
Fhet =kd — ky —mg ....... (ii)
Substituting the expression k d = mg in equation (ii)

Fpet =mg — ky —mg

ma = — Ky
Lo _ X
= m y
k .
— is constant
m
a= — constant y

a X —y



INTRODUCTION TO SHM GRAPHS

SHM is characterized by its sinusoidal nature, which is best understood through its graphical
representations

Displacement in SHM

Displacement in SHM is the distance from the mean position in a specific direction.
Graphical Representation of Displacement
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2
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Displacement-Time Graph: A sinusoidal curve representing how displacement varies
with time.

Amplitude (xo): The peak value of displacement; the highest point on the displacement
graph.

Period (T): The duration for a complete oscillation, visible as the distance between

two consecutive peaks on the graph.
x =xncosmt
One complete cycle
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VELOCITY IN SHM

Velocity in SHM is the rate of change of displacement. It gives us an idea about how fast the
object is moving and in which direction.

Velocity-Time Graph in SHM

1

2

3

sine Curve Representation: Velocity in SHM follows a cosine curve, which is a phase-
shifted version of the displacement graph.

Maximum Velocity (vo): The peak value of the velocity graph, occurs when the object
crosses the equilibrium position.

Zero Velocity: Points where the curve touches the time axis, indicating the object is
momentarily at rest (at maximum displacement points).
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ACCELERATION IN SHM

Acceleration in SHM, defined as the rate of change of velocity, is always directed towards

the mean position and varies with displacement.

Acceleration-Time Graph

1 Inverted cos Curve: The acceleration graph in SHM typically looks like an inverted
sine wave, showing how it changes over time.

2 Maximum Acceleration: Corresponds to the points of maximum displacement.

3 Zero Acceleration: When the object passes through the equilibrium position,
acceleration becomes zero

a =-a cosot
x-l max

Maximum
Acceleration

Minimum
Acceleration]




SIMPLE HARMONIC MOTION RELATED TO UNIFORM CIRCULAR MOTION

simple harmonic motion has an interesting relationship to particles rotating in a circle
with uniform speed. Consider a mass m rotating is a circle of radius r with a speed v as shown
in the figure. The easiest way to view this motion is to shine a light that casts a shadow of the
object on a screen, as shown in the figure, while the object itself moves on a circular path, it
shadow moves back and forth in a straight line on the screen.
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PROJECTION OF UNIFORM CIRCULAR MOTION ALONG A DIAMETER OF THE CIRCLE.

Consider a particle of mass m rotating in a circle
of radius r with a speed of v, then projection ‘Q’ of the
particle moves back and forth along the diameter of the
circle.

The centripetal acceleration of particle ‘P ac into
its rectangular components

a, = a.cosb
2

a, = Xo w- cosO

And

a, = a.sinf

y



2

a, = xXo w° sin@

Since a, is the component along the diameter AOB and always directed towards the

equilibrium position 0°. At any instant t the direction of the acceleration vector is opposite
to the direction of the displacement vector. Therefore;

2

a,= — Xgw”“ cosO ..........(0

Consider the right-angle triangle OQP

Substituting cosf expression in equation (i)

2 X
a, = — xgw- |—
X0
a,=— w?x
a, = — (constant) x

a, < — Xx

This is an equation representing simple harmonic motion, which indicates that the
acceleration of ‘Q’ is directly proportional to its displacement and is directed towards mean

position. Hence the motion of projection ‘Q’ along the diameter of the circle is simple
harmonic motion.

TIME PERIOD
DEFINITION

Time taken by a vibrating body to complete one cycle is called its time period.

Formula for projection ‘Q’

For projection ‘Q’ it is equal to the time taken by particle ‘P’ to complete one cycle with
angular velocity ‘o’.

or T=E
(Q)

T=2" (1)
(Q)

Formula for Spring-Mass system
The acceleration of the object attached to a spring is

k
a=-a=-—X




Comparing these two above equation , we get

K
-0 X=-—X
m
o = K
m
K
W= ,—
m
i_ﬁ
0 k

Substitute the value of 1/® in equation (1), we get,
T = 27t\/E
Kk

Time period is measured in ‘seconds’.

Unit

Dimension
The dimension of time period are [T]

FREQUENCY
DEFINITION

Number of cycles performed by a vibrating body in one second is called its frequency.

Formula for Projection ‘Q’

w

2n

Formula for Spring-Mass system
We know that the frequency of the system is

T 2w

1

f = —w

2T

Substitute the value of ® in above equation, we get,

1 [k
et K
Unit

Frequency is measured in (cycle/sec) or Hz

1 Hz = 1 cycle/second



INSTANTANEOUS DISPLACEMENT
Displacement is the distance from equilibrium position at any instant.

When a particle ‘P’ moves in a circle of radius ‘r’ its projection ‘Q’ performs
SHM along the diameter.

Let,

o= uniform angular speed of ‘P’

t =time internal

X = instantaneous displacement of ‘Q’ y

In the right angle triangle, AOPQ

Cos6 = %
OP

Cos0 = é

X = r Cos0
X = Xy Cos(ot+®) r=x, and O=ot+d

Where,
Xo = maximum displacement from mean position known as Amplitude.
® = initial phase or phase constant.

INSTANTANEOUS VELOCITY

Let a particle ‘P’ rotate in a circle of radius ‘r’ with uniform linear speed V,. The
speed of projection Q is the component of V, along x-axis i.e. Vx.

T
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Sin9=Sine=@ 5 v P
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Ccing_ Vx B

.. SInd = v, 5 v: a X-
or  Vx=V,Sing (1)

We kow that

Vp =Trm

Sing = Sind = +1—Cos%0



Subtituting these values in equation (i), we get

V, =rm+1-Cos’0

X X
Vi=ro,1-— "+ CosO=—
r r
r* —x?
V, =rm 5
r
2 2
re—x
V.

2 2
Vre —x
Vy=ro ———
r
VX=03\/r2—X2
_ 2 _ 2
V= o V, = mX,"—X r=Xg

This 1s an expression for instantaneous speed of projection ‘Q’.

FOR SPRING-MASS SYSTEM

We know for spring-mass system that © = K

m
V, = \/K X2 = X2
m

This is an expression for instantaneous speed of spring-mass system

MAXIMUM VELOCITY
The projection ‘Q’ has maximum velocity when it passes through the mean position.
When the displacement is zero( x = 0)

Put x=0 in equation for instantaneous velocity.

Vmax

_ [, 2
Viax = 04X
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Similarly for spring-mass system

k
Vo= — X
max m 0
k
Vimax = — X
m

MINIMUM VELOCITY
The projection ‘Q’ has minimum velocity when its displacement from the equilibrium
IS @ maximum

Put x = x, in equation for instantaneous velocity

2 2
Vminimum = OJ\IXO = Xp

V —

minimum —

INSTANTANEOUS KINETIC ENERGY

In an ideal system with no friction or other non-conservative forces, the total energy is
conserved. For example, the total energy E of a mass on a spring is the sum of its kinetic
energy (K.E) and potential energy (P.E). therefore,

E=KE+PE (i)

Since E remain the same throughout the motion, it follow that there is a continual tradeoff

between Kkinetic and potential energy.

The kinetic energy of the mass is
KE=1m?
2
For a body executing simple harmonic motion, the instantaneous velocity of the mass is
Vx = \/% VX —X?

Substituting the value of velocity from the above equation in kinetic energy equation.



MAXIMUM K.E
When a body passes through mean position its K.E is maximum i.e. when x =0 K.E =

K. E( max)

KE jox =

" max

k (xé —O)

2
K Xg

MINIMUM K.E
When a body at extreme position, its K.E is minimum i.e. when X = Xo

INSTANTANEOUS POTENTIAL ENERGY

We know that P.E =work done
= (Force) (displacement)
In a system executing SHM, force is proportional to displacement i.e.
F=0, when displacement=x =0
And F = Kx when displacement = x

Now,



O+ Kx

E

av

= 1 KX
2
P.E =(F,, )(displacement)

P.E = (% kx)(x)

PE = S kx?
2
MAXIMUM P.E
Potential energy is maximum when displacement is maximum i.e., P.E = P.Emax When x

= Xo (at extreme position)

TOTAL ENERGY
At any instant the total energy ‘E’ of a body performing SHM is equal to the sum of K.E
& P.E.

E=KE+PE

2
EE= Zkx3 %kx2 + = kx?
E=%kx§

or E=constant
Thus, Total energy of a body executing SHM is always constant.

SIMPLE PENDULUM

DEFEINITION
A point mass suspended from a frictionless, rigid support by a light, inextensible
string is known as simple pendulum.

EXPLAINATION
Consider a pendulum of length ‘L’ and mass of bob ‘m’.

Let x be the displacement of bob from mean position. The forces acting on the bob are

T =tension in the string



W = weight of bob vertically downward.

Weight ‘w’ can be resolved in to two components.
Wx =W Cos¢

Wx =mg Cos ¢ (along the string)

Wy =W Sin ¢

Wy =mg Sin ¢ (perpendicular to string)

Since the bob does not move along the string.
Therefore, T=W =W Cos 60

Hence the net force Wy, responsible for the motion of bob, Wy also called restoring
force.

Restoring force = F = - mg Sing
The minus sign indicates that F is directed towards mean position.

For small angleg (measured in radian), the sing is approximately equal to the angle
itself, that is,

Sin0~0

F=-mg®0

The arc length displacement of the mass from mean position is

‘*X=L0



equivalently,

0=2
L

X
F=-mg =
L

Using Newton’s 2 law of motion

ma——mgi
- L

a.:—gE

For a particular pendulum 9. constant

a = —(constant) x
aa— X
This is an equation representing SHM, which proves that pendulum execute SHM

TIME PERIOD OF PENDULUM

DEFINITION
Time required by a simple pendulum to complete one cycle is called its time period.

Formula
We know that: - a=-wX
For pendulum: - a=- 9y

Comparing these two equations, we get

-(DZX:-%X
= 9
|

o= |3

I
i_r
@ g



But time period is given by

T= 27[.l
)

T=2x !

g

unit and dimension

Unit of time period is second. It had dimension of time i.e. T.
FREQUENCY OF PENDULUM

DEFINITION
Number of cycles performed by a pendulum in one second is called its frequency.

FORMULA
Mathematically frequency is defined as the reciprocal of time period.

f= ia)
27

Substituting the value of ® in the above equation

UNIT And DIMENSION
It is measured in hertz (Hz)

It has dimension of inverse timei.e. T™

SECOND’S PENDULUM

DEFINITION

A simple pendulum whose time period is two second is called second’s pendulum.

Length of Second’s Pendulum

Consider T = 2;;\/% Put = =3.142
g = 9.8 m/s?
2=2(3.142) \/I T=2sec
9.8
1

| . .
i \/% Squaring both sides, we get

10 9.8

= ' ori- _—-0.99m
(3.142)> 9.8 (3.142)




DAMPING

Damping is the process where energy is dissipated from an oscillating system
DAMPED HARMONIC MOTION

Damped harmonic oscillation is a type of motion where energy is lost at each cycle.
The amplitude of the oscillations decreases over time and eventually, the motion will stop.
This happens when the damping force is greater than the restoring force.

Damped Oscillations
A

Q

X (m)

—
e

1T 2T 3T 4T 5T 6T 7T
Time (s)

DAMPED OSCILLATION

Damped oscillation refers to an oscillatory motion in which the amplitude of the
oscillation gradually decreases over time. This decrease in amplitude is due to the dissipation
of energy from the system, often due to friction or other resistive forces.
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https://en.wikipedia.org/wiki/Oscillating_system

DAMPED HARMONIC OSCILLATOR CASES

In a damped harmonic oscillator, three cases are distinguished based on the damping level:

Large Damping: In systems with very large damping, oscillations do not occur;
instead, the system slowly moves towards equilibrium. The displacement of the
oscillator moves more slowly towards equilibrium than critically damped systems.

Critical Damping: Critical damping occurs when the damping constant equals the
square root of 4 times the mass multiplied by the spring constant. Systems under
critical damping return to equilibrium as quickly as possible, like shock absorbers in
cars, without overshooting.

Small Damping: In underdamped systems, oscillations occur while the amplitude
decreases exponentially until the system comes to rest. These systems oscillate
through the equilibrium position and eventually approach zero amplitude.

Damped Oscillation Example

Examples of damped oscillation include:

Mass on a Spring: When a mass is attached to a spring and immersed in a fluid, the
system undergoes damped oscillation. The amplitude of the oscillation decreases over
time due to the damping force exerted by the fluid.

Pendulum in a Viscous Medium: A pendulum swinging in a medium with
significant viscosity experiences damped oscillation. The damping force from the
medium causes the pendulum’s amplitude to decrease over time, eventually leading to
the pendulum coming to rest.

FREE OSCILLATION

If an oscillator is displaced and then released it will begin to vibrate. If no more external
forces are applied to the system, it is a free oscillator

The oscillation of a simple pendulum is a good example of free oscillation. When a

simple pendulum is set into oscillation, it vibrates with its natural frequency. If it is not
disturbed by some external force, it will continue to do so with its natural frequency.

Point of suspension

Free Oscillation
String

Maxima Maxima

O

Equilibrium Point




FORCED OSCILLATIONS

The phenomenon of setting a body into vibrations with the external periodic force
having a frequency different from natural frequency of body is called forced vibrations
and the resulting oscillatory system is called a forced oscillator.

EXAMPLE OF FORCED OSCILLATION

when a child is on a swing, they will be pushed at one end after each cycle to keep
swinging and prevent air resistance from damping the oscillations. These extra pushes are the
forced oscillations, without them, the child will eventually come to a stop.

RESONANCE

When the driving frequency applied to an oscillating system is equal to its natural
frequency, the amplitude of the resulting oscillations increases significantly

If the frequency of external driving force f continues to increase and if it becomes
an equal or integral multiple of natural frequency f, of the system such that

f external = f 1

or fexternat = 2f1
or fexternal = 3f1

or fexternal =n fl

IMPORTANT THINGS FOR RESONANCE

There are three things needed for the incident of Resonance, and they are:

1. An Object or a System that has a natural frequency.
2. Driving Force whose frequency is the same as the natural frequency of a system.

3. The elements which can destroy the energy of the system must be least.



At resonance the driving force is always in the same direction as the object's velocity.
Since the driving force is always doing positive work, the energy of the oscillator builds
up until the dissipation of energy balances the energy added by the driving force. For an
oscillator with little damping, the amplitude becomes large. When the driving force is not
at resonance, some negative work is stored in the system. Hence the net work done by the
driving force decreases as the driving frequency moves away from the resonance.
Therefore, the oscillator's energy and amplitude is smaller than at resonance

Al
Small damping

Medium damping

Amplitude

Heavy damping

| |

T 1 T 1

| l T
fo b 3
2 2

Driving frequency
PRACTICALEXAMPLE OFDAMPED OSCILLATIONS

Damping is not always disadvantageous. An example of damped oscillation can be seen
in a shock absorber used in vehicles as shown in figure. A shock absorber is a device that is
integrated into the suspension system of a car or motorcycle. Its primary purpose is to dampen
the oscillations caused by irregularities in the road surface or when the vehicle encounters
bumps. In order to compress or expand the shock absorber viscous oil
must flow through the holes in the piston. The viscous force dissipates
energy regardless of which direction the piston moves. The shock Mo
absorber enables the spring to smoothly return to its equilibrium length
without

Upper
Mount

Coil

Piston Rod Rator

Blade

Oil Flow
Base
Valve

Lower
Mount




Frequency response and Sharpness of Resonance (Q-Factor)

In most physics and engineering problems the
oscillators are analyzed in the limit of small
amplitudes. In mechanics problems, an oscillating
spring or other structural element has some
nonlinearity in its stress-strain curve as the
driving force increases and reaches close to the
elastic limit.

An oscillating system does not like that an
external force resonates with its natural
frequency. If you do this the system responds and
sometimes its response is catastrophic, the
collapse of Tacoma Narrows Bridge is a textbook
example of this fact.

On the contrary, when the damping forces are
sufficiently strong to restrict the oscillation's
amplitude at resonance, the oscillator behaves
linearly. This behavior arises because, at
resonance, the energy supplied to the oscillator
from an external source precisely matches the
energy loss due to work done against the damping
forces. Increasing damping diminishes the
sharpness of resonance (Fig. thereby
reducing its strength.

The sharpness of resonance depends mainly on
two factors: amplitude and damping. The Q-
factor quantifies the sharpness of resonance. It
signifies the reduction of the oscillation's
amplitude over time, which corresponds to the
decay of energy in an oscillating system. It is
approximately defined as the number of free
oscillations the oscillator undergoes before its
amplitude decays to zero. In the case of light
damping, the Q-factor will be large, whereas it
will be small for significant damping.
Mathematically, the Q-factor is the ratio of energy
stored to energy lost per oscillation, and it is a
dimensionless quantity.

Q = Estored/Eiost

" KNO W?

In 1940 Tacoma Narrows Bridge in
Washington USA was collapsed due to
increase in amplitude as heavy wind
blowing across the bridge resonated with
the natural frequency of oscillation of the
bridge. This decreases the damping and
with the increasing amplitude enormous
amount of energy is stored in it which
causes the bridge to collapse.

- i gL

The collapsed, Tacoma Narrows Bridge.

The newly built Tacoma Narrows bridges
opened in 1950 (right) and 2007 (left).
These bridges are built with much higher
resonant frequencies.



