
 

  



 VIBRATORY MOTION 

When a body moves to and fro about its mean position, it is said to possess vibratory 

or oscillatory motion. 

Examples 

 Some examples are: 

1. The motion of the sitar’s string  

2.  Prongs of a tuning fork  

3. The motion of atoms in a solid etc. 

PERIODIC MOTION 

 A motion, which repeats itself in equal intervals of time, is called periodic motion. 

Example 

 Some examples are: 

1. The motion of a simple pendulum  2. The motion mass-spring system. etc. 

SIMPLE HARMONIC MOTION 

DEFINITION: 

An object moves with simple harmonic motion whenever its acceleration is directly 

proportional to its displacement from some equilibrium position and is oppositely 

directed or directed towards an equilibrium position is known as simple harmonic 

motion. 

MATHEMATICAL EXPRESSION: 

      a α - x  

Where , a is an acceleration 

    x is a displacement from the equilibrium position, 

  A negative sign shows the acceleration is directed toward the equilibrium 

position 

Example  

Some examples of SHM are 

1) The motion of simple pendulum, 

2) The motion of projection of a body moving in a circle etc. 

CHARACTERISTICS AND CONDITIONS OF SIMPLE HARMONIC MOTION 

 

1) There must be a restoring force, directly proportional to displacement. 

2) The acceleration should be directly proportional to displacement. 

3) The acceleration should be directed toward mean position. 

4) The system should be frictionless. 

5) The body must have inertia. 

6) Total energy of the vibrating body should be constant. 

 



MOTION UNDER ELASTIC RESTORING FORCE 

A mass attached to an ideal massless spring and free to move over a frictionless 

horizontal surface performs simple harmonic motion. 

Proof: 

Consider an object of mass ‘m’ attached to an ideal spring placed on a frictionless 

horizontal surface. If the spring is stretched or compressed a small distance x from its 

upstretched position and then released it exerted force on the object obey the equation. 

(Applied force) = kx. 

Where x is the displacement of the object from its equilibrium position and k is the 

positive constant called the spring constant. 

Restoring force = - (Applied force) 

  F  = - k (Hooke’s law) 

 

The negative sign in the above equation significance that the force exerted by the spring 

is always directed opposite the displacement of the object. We can use Newton’s second 

law of motion to calculate the acceleration of the object.       

m a = - k x    [ F = ma ] 

           xa = −
k

m
  

k

m
 = is  constant during the motion of the object. 

Then,           a = - (constant) x 

 Or         a   - x 

This is an equation representing simple harmonic motion (SHM), which shows that a mass 

attached to a spring performs S H M,  

 

 



 MOTION OF A MASS ATTACHED TO A SPRING: 

An oscillating mass on a vertical spring also exhibits SHM. 

 Suppose an object of mass m and weight mg is hung from the spring with spring constant k. 

The spring is stretched downward under gravity to a distance d from its relaxed point A and 

settled at 0  the equilibrium position. 

 
 Taking the y-axis in an upward direction the net force acting on mass at equilibrium is 

Fnet = spring force − weight 

                                                  Fnet = kd − mg 

                                                      0 = kd − mg 

                                                   mg = kd … … . . (i) 

if the upward direction of y is taken as positive then the net force acting on the mass at 
B is 

Fnet = spring force − weight 

                                                  Fnet = k(d − y) − mg 

                                                  Fnet = k d  −   ky − mg … … . (ii) 

Substituting the expression k d = mg in equation (ii) 

 

                                               Fnet = mg  −   ky − mg 

                                                ma =   −  ky  

                                                   a =   −  
k

𝑚
 y 

   
k

𝑚
  𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

                                                  a =   −  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  y 

                                                  a   ∝  − y 

 

 



INTRODUCTION TO SHM GRAPHS 

SHM is characterized by its sinusoidal nature, which is best understood through its graphical 

representations 

Displacement in SHM 

Displacement in SHM is the distance from the mean position in a specific direction. 

Graphical Representation of Displacement 

1 Displacement-Time Graph: A sinusoidal curve representing how displacement varies 

with time. 

2 Amplitude (x₀): The peak value of displacement; the highest point on the displacement 

graph. 

3 Period (T): The duration for a complete oscillation, visible as the distance between 

two consecutive peaks on the graph. 

 
VELOCITY IN SHM 

Velocity in SHM is the rate of change of displacement. It gives us an idea about how fast the 

object is moving and in which direction. 

Velocity-Time Graph in SHM 

1 sine Curve Representation: Velocity in SHM follows a cosine curve, which is a phase-

shifted version of the displacement graph. 

2 Maximum Velocity (v₀): The peak value of the velocity graph, occurs when the object 

crosses the equilibrium position. 

3 Zero Velocity: Points where the curve touches the time axis, indicating the object is 

momentarily at rest (at maximum displacement points). 



 
 

ACCELERATION IN SHM 

Acceleration in SHM, defined as the rate of change of velocity, is always directed towards 

the mean position and varies with displacement. 

Acceleration-Time Graph 

1 Inverted cos Curve: The acceleration graph in SHM typically looks like an inverted 

sine wave, showing how it changes over time. 

2 Maximum Acceleration: Corresponds to the points of maximum displacement. 

3 Zero Acceleration: When the object passes through the equilibrium position, 

acceleration becomes zero 

 

 



SIMPLE HARMONIC MOTION RELATED TO UNIFORM CIRCULAR MOTION 

simple harmonic motion has an interesting relationship to particles rotating in a circle 

with uniform speed. Consider a mass m rotating is a circle of radius r with a speed v as shown 

in the figure. The easiest way to view this motion is to shine a light that casts a shadow of the 

object on a screen, as shown in the figure, while the object itself moves on a circular path, it 

shadow moves back and forth in a straight line on the screen.    

 

PROJECTION OF UNIFORM CIRCULAR MOTION ALONG A DIAMETER OF THE CIRCLE. 

Consider a particle of mass m rotating in a circle 

of radius r with a speed of v, then projection ‘Q’ of the 

particle moves back and forth along the diameter of the 

circle.  

The centripetal acceleration of particle ‘ P’ ac into 

its rectangular components 

 

𝒂𝒙 =  𝒂𝒄 𝐜𝐨𝐬 𝜽 

                     𝒂𝒙 =  𝒙𝟎 𝝎𝟐  𝐜𝐨𝐬 𝜽 

And 

                   𝒂𝒚 =  𝒂𝒄 𝐬𝐢𝐧 𝜽 



𝒂𝒚 =  𝒙𝟎 𝝎𝟐  𝐬𝐢𝐧 𝜽 

Since 𝒂𝒙 is the component along the diameter AOB and always directed towards the 

equilibrium position ‘0’. At any instant t the direction of the acceleration vector is opposite 

to the direction of the displacement vector. Therefore; 

                          𝒂𝒙 =  −  𝒙𝟎 𝝎𝟐  𝐜𝐨𝐬 𝜽   … … … … . . (𝒊) 

Consider the right- a n g l e  triangle OQP 

𝑪𝒐𝒔𝜽 =
𝒙

𝒙𝟎
. . . . . . . . . . . . . . . . . (𝒊𝒊) 

Substituting cosθ expression in equation (i) 

𝒂𝒙 =  −  𝒙𝟎 𝝎𝟐  (
𝒙

𝒙𝟎

) 

                     𝒂𝒙 =  −   𝝎𝟐  𝒙 

                           𝒂𝒙 =  −   (𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 ) 𝒙 

                         𝒂𝒙     ∝  −   𝒙 

This is an equation representing simple harmonic motion, which indicates that the 

acceleration of ‘Q’ is directly proportional to its displacement and is directed towards mean 

position. Hence the motion of projection ‘Q’ along the diameter of the circle is simple 

harmonic motion. 

TIME PERIOD 

DEFINITION  

 Time taken by a vibrating body to complete one cycle is called its time period. 

Formula for projection ‘Q’ 

For projection ‘Q’ it is equal to the time taken by particle ‘P’ to complete one cycle with 

angular velocity ‘ω’. 

or      
2

T



=   

   
2

T



=                                      (1) 

Formula for Spring-Mass system 

The acceleration of the object attached to a spring is  

   a = - 
k

a x
m

= −  

  But 2a x= −  



Comparing these two above equation , we get 

   2 k
x x

m
− = −  

         2 k

m
 =          

   
k

m
 =  

   
1 m

k
=  

     

Substitute the value of 1/ω in equation (1), we get,  

   
m

T 2
k

=  

Unit  

 Time period is measured in ‘seconds’. 

Dimension 

 The dimension of time period are  [T] 

FREQUENCY 

DEFINITION  

Number of cycles performed by a vibrating body in one second is called its frequency. 

Formula for Projection ‘Q’ 

    f = 
𝜔

2 𝜋
  

Formula for Spring-Mass system 

 We know that the frequency of the system is  

        f =   
ω

2 π
 

      𝑓  =   
1

2 𝜋
  𝜔   

Substitute the value of ω in above equation, we get,   

1 k
f

2 m
 =  

Unit 

 Frequency is measured in (cycle/sec)  or Hz 

1 Hz = 1 cycle/second  



INSTANTANEOUS DISPLACEMENT 

 Displacement is the distance from equilibrium position at any instant.  

When a particle ‘P’ moves in a circle of radius ‘r’ its projection ‘Q’ performs 

SHM along the diameter. 

Let, 

 ω= uniform angular speed of ‘P’ 

 t   = time internal 

 x = instantaneous displacement of ‘Q’ 

 In the right angle triangle,  OPQ  

   
OQ

Cos
OP

 =  

   
x

Cos
r

 =  

x r Cos=  

( )0 0x x Cos t r x and t    = + = = +  

Where, 

 xo = maximum displacement from mean position known as Amplitude. 

 Φ = initial phase or phase constant. 

INSTANTANEOUS VELOCITY 

 

Let a particle ‘P’ rotate in a circle of radius ‘r’ with uniform linear speed Vp. The 

speed of projection Q is the component of Vp along x-axis i.e. Vx. 

 

In ΔPST 

 Sin   = 
Perp

Sin
Hyp

 =  

X

P

V
Sin

V
 =  

or Vx = Vp Sin                                (i) 

We kow that 

 Vp  = r ω 

  Sin  = 
2Sin 1 Cos = −  



 Subtituting these values in equation (i), we  get 

2
xV r 1 Cos = −      

2

x 2

x
V r 1

r
= −    

x
Cos

r
 =  

2 2

x 2

r x
V r

r


−
=  

2 2

x
2

r x
V r

r


−
=  

2 2

x

r x
V r

r


−
=  

2 2
xV r x= −  

Vx =   ω 
2 2

x 0 0V x x r x= − =     

 

This is an expression for instantaneous speed of projection ‘Q’. 

FOR SPRING-MASS SYSTEM 

 We know for spring-mass system that    
k

m
 =  

   
2 2

x 0

k
V x x

m
= −  

This is an expression for instantaneous speed of spring-mass system 

 

MAXIMUM VELOCITY 

The projection ‘Q’ has maximum velocity when it passes through the mean position. 

When the displacement is zero( x = 0)   

 Put x=0  in equation for instantaneous velocity. 

 

   
2 2

max 0V x 0= −  

   
2

max 0V x=  

max 0V x=  



 

    

Similarly for spring-mass system 

max 0

k
V x

m
=  

   Vmax  =   
m

k
 0x  

 

MINIMUM VELOCITY 

The projection ‘Q’ has minimum velocity when its displacement from the equilibrium 

is a maximum 

    0x x=  

 Put x = 0x  in equation for instantaneous velocity 

   
2 2

min imum 0 0V x x= −  

   minimumV 0=  

INSTANTANEOUS KINETIC ENERGY 

 

In an ideal system with no friction or other non-conservative forces, the total energy is 

conserved. For example, the total energy E of a mass on a spring is the sum of its kinetic 

energy (K.E) and potential energy (P.E). therefore, 

    E = K.E + P.E                                           (i) 

Since E remain the same throughout the motion, it follow that there is a continual tradeoff 

between kinetic and potential energy. 

 The kinetic energy of the mass is 

      K.E = 2

2

1
mv  

For a body executing simple harmonic motion, the instantaneous velocity of the mass is 

    Vx =   
m

k
 22

0 xx −  

Substituting the value of velocity from the above equation in kinetic energy equation.

   



    

2

2 2
0

1 k
K.E m . x x

2 m

 
= − 

 
 

    ( )
2

2
2 2
0

1 k
K.E m . x x

2 m

  
 = − 
   

 

( )2 2
0

1 k
K.E m x x

2 m
= −  

( )2 2
0

1
K.E k x x

2
= −  

   

MAXIMUM K.E 

When a body passes through mean position its K.E is maximum i.e. when x = 0  K.E = 

K.E( max)     

   ( )2
max 0

1
K.E k x 0

2
= −   

2
max 0

1
K.E k x

2
=  

     

MINIMUM K.E 

 When a body at extreme position, its K.E is minimum i.e. when x = x0   

 

    ( )2 2
min 0 0

1
K.E k x x

2
= −  

    minK.E 0=  

     

INSTANTANEOUS POTENTIAL ENERGY 

 

 We know that   P.E = work done 

     = (Force) (displacement) 

 In a system executing SHM, force is proportional to displacement i.e. 

  F = O, when displacement = x = 0 

 And F = Kx when displacement = x 

Now, 



    av

O Kx
F

2

+
=  

    av

1
F Kx

2
=  

                       ( )( )avP.E F displacement=  

    
1

P.E kx (x)
2

 
=  
 

 

    21
P.E k x

2
=  

MAXIMUM P.E 

Potential energy is maximum when displacement is maximum i.e., P.E = P.Emax when x 

= xo (at extreme position) 

   2
max o

1
P.E k x

2
=  

TOTAL ENERGY 

At any instant the total energy ‘E’ of a body performing SHM is equal to the sum of K.E 

& P.E. 

   E K.E P.E= +   

       E ( )2 2 2
o

1 1
E k x x k x

2 2
= − +  

       E 2 2 2
o

1 1 1
E k x k x k x

2 2 2
= − +  

     2
o

1
E k x

2
=  

  or     E cons tan t=         

Thus, Total energy of a body executing SHM is always constant. 

SIMPLE PENDULUM 

DEFINITION  

A point mass suspended from a frictionless, rigid support by a light, inextensible 

string is known as simple pendulum. 

EXPLAINATION  

Consider a pendulum of length ‘L’ and mass of bob ‘m’.  

Let x be the displacement of bob from mean position. The forces acting on the bob are  

T = tension in the string  



W = weight of bob vertically downward. 

Weight ‘w’ can be resolved in to two components. 

Wx = W Cos   

Wx = mg Cos   (along the string) 

WY = W Sin    

WY = mg Sin   (perpendicular to string) 

Since the bob does not move along the string. 

Therefore, T = W = W Cos  θ 

Hence the net force WY, responsible for the motion of bob,  WY also called restoring 

force. 

 Restoring force = F = - mg Sin  

The minus sign indicates that F is directed towards mean position. 

For small angle  (measured in radian), the sin  is approximately equal to the angle 

itself, that is, 

Sin    

F mg = −  

  

             The arc length displacement of the mass from mean position is 

    x L =   



 equivalently,  

 

     
x

L
 =   

    
x

F mg
L

= −  

Using Newton’s 2rd law of motion   

    
x

ma mg
L

= −  

    
x

a g
L

= −   

     

 For a particular pendulum 
g

L
 = constant 

   ( )cons tan ta x= −     

  a x −  

This is an equation representing SHM, which proves that pendulum execute SHM 

TIME PERIOD OF PENDULUM 

DEFINITION  

Time required by a simple pendulum to complete one cycle is called its time period. 

 

Formula  

 We know that: -  a = - ω 2x 

 For pendulum: -  a = - x
l

g
 

 Comparing these two equations, we get  

    - ω2x = - x
l

g
 

        ω2 = 
l

gl
 

         ω = 
l

g
 

       
g

l
=



1
 



But time period is given by 

    T = 



1

.2    

    T = 
g

l
2  

unit and dimension 

 Unit of time period is second. It had dimension of time i.e. T. 

FREQUENCY OF PENDULUM 

DEFINITION  

 Number of cycles performed by a pendulum in one second is called its frequency. 

FORMULA  

 Mathematically frequency is defined as the reciprocal of time period. 

    f = 


.
2

1
 

 Substituting the value of ω in the above equation  

    f = 
l

g

2

1
 

UNIT And DIMENSION 

 It is measured in hertz (Hz) 

 It has dimension of inverse time i.e. 1−T  

SECOND’S PENDULUM 

DEFINITION 

 A simple pendulum whose time period is two second is called second’s pendulum. 

Length of Second’s Pendulum 

 Consider 
g

l
T 2=    Put   = 3.142 

      g = 9.8 m/s2 

  2 = 2 (3.142) 
8.9

l
  T = 2 sec 

  
8.9142.3

1 l
=  Squaring both sides, we get 

  
8.9)142.3(

1
2

l
=  Or ml 99.0

)142.3(

8.9
2

−==  

  



DAMPING 

Damping is the process where energy is dissipated from an oscillating system   

DAMPED HARMONIC MOTION 

Damped harmonic oscillation is a type of motion where energy is lost at each cycle. 

The amplitude of the oscillations decreases over time and eventually, the motion will stop. 

This happens when the damping force is greater than the restoring force. 

 

DAMPED OSCILLATION 

Damped oscillation refers to an oscillatory motion in which the amplitude of the 

oscillation gradually decreases over time. This decrease in amplitude is due to the dissipation 

of energy from the system, often due to friction or other resistive forces. 

 

https://en.wikipedia.org/wiki/Oscillating_system


DAMPED HARMONIC OSCILLATOR CASES 

In a damped harmonic oscillator, three cases are distinguished based on the damping level: 

• Large Damping: In systems with very large damping, oscillations do not occur; 

instead, the system slowly moves towards equilibrium. The displacement of the 

oscillator moves more slowly towards equilibrium than critically damped systems. 

• Critical Damping: Critical damping occurs when the damping constant equals the 

square root of 4 times the mass multiplied by the spring constant. Systems under 

critical damping return to equilibrium as quickly as possible, like shock absorbers in 

cars, without overshooting. 

• Small Damping: In underdamped systems, oscillations occur while the amplitude 

decreases exponentially until the system comes to rest. These systems oscillate 

through the equilibrium position and eventually approach zero amplitude. 

Damped Oscillation Example 

Examples of damped oscillation include: 

• Mass on a Spring: When a mass is attached to a spring and immersed in a fluid, the 

system undergoes damped oscillation. The amplitude of the oscillation decreases over 

time due to the damping force exerted by the fluid. 

• Pendulum in a Viscous Medium: A pendulum swinging in a medium with 

significant viscosity experiences damped oscillation. The damping force from the 

medium causes the pendulum’s amplitude to decrease over time, eventually leading to 

the pendulum coming to rest. 

FREE OSCILLATION 

If an oscillator is displaced and then released it will begin to vibrate. If no more external 

forces are applied to the system, it is a free oscillator 

The oscillation of a simple pendulum is a good example of free oscillation. When a 

simple pendulum is set into oscillation, it vibrates with its natural frequency. If it is not 

disturbed by some external force, it will continue to do so with its natural frequency. 

 



 

FORCED OSCILLATIONS 

The phenomenon of setting a body into vibrations with the external periodic force 

having a frequency different from natural frequency of body is called forced vibrations 

and the resulting oscillatory system is called a forced oscillator. 

EXAMPLE OF FORCED OSCILLATION 

 when a child is on a swing, they will be pushed at one end after each cycle to keep 

swinging and prevent air resistance from damping the oscillations. These extra pushes are the 

forced oscillations, without them, the child will eventually come to a stop. 

 

RESONANCE 

When the driving frequency applied to an oscillating system is equal to its natural 

frequency, the amplitude of the resulting oscillations increases significantly 

If the frequency  of  external  driving  force f continues to increase and if it becomes 

an equal or integral multiple of natural frequency fo of the system such that 

𝒇𝒆𝒙𝒕𝒆𝒓𝒏𝒂𝒍  =  𝒇𝟏     

𝒐𝒓    𝒇𝒆𝒙𝒕𝒆𝒓𝒏𝒂𝒍  =  𝟐𝒇𝟏        

𝒐𝒓    𝒇𝒆𝒙𝒕𝒆𝒓𝒏𝒂𝒍  =  𝟑𝒇𝟏         

𝒐𝒓    𝒇𝒆𝒙𝒕𝒆𝒓𝒏𝒂𝒍  = 𝒏 𝒇𝟏         

IMPORTANT THINGS FOR RESONANCE  

There are three things needed for the incident of Resonance, and they are: 

1. An Object or a System that has a natural frequency. 

2. Driving Force whose frequency is the same as the natural frequency of a system. 

3. The elements which can destroy the energy of the system must be least. 

 



At resonance the driving force is always in the same direction as the object's velocity. 

Since the driving force is always doing positive work, the energy of the oscillator builds 

up until the dissipation of energy balances the energy added by the driving force. For an 

oscillator with little damping, the amplitude becomes large. When the driving force is not 

at resonance, some negative work is stored in the system. Hence the net work done by the 

driving force decreases as the driving frequency moves away from the resonance. 

Therefore, the oscillator's energy and amplitude is smaller than at resonance 
 

 

PRACTICAL EXAMPLE OF DAMPED OSCILLATIONS 

Damping is not always disadvantageous. An example of damped oscillation can be seen 

in a shock absorber used in vehicles as shown in figure. A shock absorber is a device that is 

integrated into the suspension system of a car or motorcycle. Its primary purpose is to dampen 

the oscillations caused by irregularities in the road surface or when the vehicle encounters 

bumps. In order to compress or expand the shock absorber viscous oil 

must flow through the holes in the piston. The viscous force dissipates 

energy regardless of which direction the piston moves. The shock 

absorber enables the spring to smoothly return to its equilibrium length 

without oscillating up and down 

    



Frequency response and Sharpness of Resonance (Q-Factor) 

 

 
 

 

 

 

 

 


