BOOK NUMERICAL

Convert the freezing point of mercury -39°C into °F and the comfort level 1 temperature of 20° into Kelvin.

$$\overline{T_{\,^{\circ}\text{C}}} = -39 \,^{\circ}\text{C}$$

$$T_{\rm \circ F} = ?$$

$$T_{\rm \circ C} = 20 \, {\rm \circ C}$$

$$T_k = ?$$

SOLUTIONS

Celsius to kelvin

$$T_k = T_{\text{°C}} + 273$$

$$T_k = 20 + 273 = 293 K$$

Celsius to Fahrenheit

$$T_{\rm \circ F} = \frac{9}{5} \times T_{\rm \circ C} + 32$$

$$T_{^{\circ}F} = \frac{9}{5} \times (-39) + 32$$

$$T_{\rm °F} = -72.2 + 32$$

$$T_{\rm \circ F} = -38.2 \, {\rm \circ F}$$

The boiling point of liquid nitrogen is -321 °F. Change it into equivalent kelvin 2 temperature.

$$\overline{^{\circ}F} = -321 \, ^{\circ}F$$

$$T_k = ?$$

SOLUTIONS

Celsius to kelvin

$$T_k = T_{\text{°C}} + 273$$

$$T_k = 20 + 273 = 293 K$$

SOLUTIONS

Fahrenheit to kelvin

$$T_K = \frac{5}{9} (T_{\rm °F} + 459.67)$$

$$T_K = \frac{5}{9} (T_{\text{°F}} + 459.67)$$
 $T_K = \frac{5}{9} (-321 + 459.67)$

$$T_K = \frac{5}{9} (138.67)$$
 $T_K = 77 K$

$$T_K = 77 K$$

Calculate the volume occupied by a gram-mole of a gas at 0 °C and a pressure of 1.0 atmosphere.

DATA
$$T = 0 \, ^{\circ}C$$
 $T = 0 + 273 = 273 \, K$
 $P = 1 \, atm$
 $number \, of \, mole \, n = 1$
 $R = 0.0821 \, \frac{L \, atm}{mol \, K}$
 $V = ?$

SOLUTIONS PV = nRT $V = \frac{nRT}{p}$ $V = \frac{(1)(0.0821)(273)}{1}$ $V = 22.41 \ liter/mol$

An air storage took whose volume is 112 liters contains 3 kg of air at a pressure of 18 atmospheres. How much air would have to be forced into the tank to increase the pressure to 21 atmosphere, assuming no change in temperature

<u>DATA</u>
$V_1 = 112 litres$
$P_1 = 18 atm$
$m_1 = 3 kg$
$P_2 = 21 atm$
$V_1 = V_2 = V$
$m_2 = ?$

SOLUTIONS
$$\frac{P_1 V_1}{m_1} = \frac{P_2 V_2}{m_2}$$

$$\frac{18 \times V}{3} = \frac{21 \times V}{m_2}$$

$$\frac{18}{3} = \frac{21}{m_2}$$

$$m_2 = \frac{3 \times 21}{18}$$

$$m_2 = 3.5 kg$$
Required of air forced into the tank
$$m = m_2 - m_1$$

$$m = 3.5 - 3 = 0.5 kg$$

A ballon contain 0.04 m³ of air at pressure of 120 KPa. Calculating the pressure required to reduce its volume to 0.025 m³ at constant temperature

$\begin{array}{|c|c|c|c|c|}\hline DATA \\ V_1 &= 0.04 \, m^3 \\ P_1 &= 120 \, KPa \, = \, 120 \, \times \, 10^3 \, Pa \\ P_1 &= 1.20 \, \times \, 10^5 \, Pa \\ P_2 &= ? \\ V_2 &= 0.025 \, m^3 \\ \hline \end{array}$ $\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline SOLUTIONS \\ P_1 \, V_1 &= P_2 \, V_2 \\ \hline (1.20 \, \times \, 10^5) \, (0.04) &= P_2 \, (0.025) \\ \hline 4800 &= P_2 \, (0.025) \\ \hline 4800 \\ \hline 0.025 &= P_2 \\ \hline P_2 &= 192000 \\ \hline P_2 &= 1.92 \, \times \, 10^5 \, Pa \\ \hline \end{array}$

- 6 The molar mass of nitrogen is 28 g mol⁻¹. For 100 g of nitrogen, calculate.
 - (a) the number of moles.
 - (b) the volume occupied at room temperature (20°C) and pressure of $1.01 \text{x} 10^{5}$ Pa

The atomic mass of nitrogen (N) is approximately 14 g/mol. the molar mass of nitrogen gas (N₂) is
$$m=2\times 14=28$$
 g/mol Number of moles = $\frac{mass\ in\ gram}{molar\ mass(g/mol)}$ $N=\frac{100}{28}=3.57$ mol
$$N=\frac{100}{28}=3.57$$
 mol
$$N=\frac{100}{28}=3.57$$
 mol
$$N=\frac{100}{28}=3.57$$
 mol
$$N=\frac{100}{28}=3.57$$
 mol
$$N=\frac{100}{28}$$
 mol

A sample of gas contains 3.0×10^{24} atoms. Calculate the volume of the gas at a temperature of 300K and a pressure of 120K Pa

DATA

$$N = 3.0 \times 10^{24} \ atoms$$

 $N_A = 6.02 \times 10^{23} \ atoms$
 $n = ?$
 $T = 300 \ K$
 $P = 120 \ kPa = 120 \times 1000 \ Pa$
 $P = 1.20 \times 10^5 \ Pa$
SOLUTIONS
 $n = \frac{N}{N_A} = \frac{3.0 \times 10^{24}}{6.02 \times 10^{23}}$
 $n = 4.98 \ mol$

$$PV = nRT$$

$$V = \frac{nRT}{P}$$

$$V = \frac{(4.98)(8.313)(300)}{1.20 \times 10^5}$$

$$V = \frac{12419.6}{1.20 \times 10^5}$$

$$V = 0.103 m^3$$

8 Calculate the root mean square velocity of hydrogen molecules at 0° C and 1.0 atm pressure. Assuming hydrogen to be an ideal gas. Under these conditions hydrogen has a density ρ of 8.99×10^{-2} kg/m³.

SOLUTIONS

DATA $T = 0 \, ^{\circ}$ C $T = 0 + 273 = 273 \, K$ $P = 1 \, atm = 1.01 \times 10^5 \, Pa$ $\rho = 8.99 \times 10^{-2} \, kg/m^3$ $v_{rms} = ?$

$$v^2 = \frac{31}{\rho}$$
Taking root on both the side
$$\sqrt{\overline{v^2}} = \sqrt{\frac{3P}{\rho}}$$

$$v_{rms} = \sqrt{\frac{3P}{\rho}}$$

$$v_{rms} = \sqrt{\frac{3(1.01 \times 10^5)}{8.99 \times 10^{-2}}}$$

$$v_{rms} = 1835.86 \, m/s$$

Calculate the root mean square speed of hydrogen molecule at 500K (mass of proton = 1.67×10^{-27} kg and K = 1.38×10^{-23} J/ K)

$\frac{\mathbf{DATA}}{T} = \frac{1}{2}$

$$T = 500 K$$

$$m_p = 1.67 \times 10^{-27} \, kg$$

$$m_H = 2 \times 1.67 \times 10^{-27} \, kg$$

$$m_H = 3.34 \times 10^{-27} kg$$

$$k = 1.38 \times 10^{-23} \text{ J/K}$$

$$v_{rms} = ?$$

SOLUTIONS

$$\frac{1}{2}m_H \overline{v^2} = \frac{3}{2} KT$$

$$\frac{1}{2}v^2 = \frac{3kT}{m_H}$$

Taking root on both the side

$$\sqrt{\overline{v^2}} = \sqrt{\frac{3 k T}{m_H}}$$

$$v_{rms} = \frac{3 k T}{m_H}$$

$$v_{rms} = \sqrt{\frac{3 (1.38 \times 10^{-23})(500)}{3.34 \times 10^{-27}}}$$

$$v_{rms} = 2489.49 \, m/s$$

- 10 (a) Determine the average value of the Kinetic energy of the particles of an ideal gas at 10° C and at 40° C.
 - (b) What is the Kinetic energy per mole of an ideal gas at these temperatures?

DATA

(a)

$$T = 10 \, ^{\circ}\text{C} = 10 + 273 = 283 \, K$$

$$T = 40 \, ^{\circ}\text{C} = 40 + 273 = 313 \, K$$

(b)

 $kinetic\ energy\ per\ mole\ =?$

SOLUTIONS

Average K.E at 10 °C

$$(K.E)_{av} = \frac{3}{2} kT$$

$$(K.E)_{av} = \frac{3}{2} (1.38 \times 10^{-23}) (283)$$

$$(K.E)_{av} = 5.858 \times 10^{-21} J$$

Average K.E at 40 °C

$$(K.E)_{av} = \frac{3}{2} kT$$

$$(K.E)_{av} = \frac{3}{2} (1.38 \times 10^{-23}) (313)$$

$$(K.E)_{av} = 6.479 \times 10^{-21} J$$

Kinetic energy per mole at 10 °C

$$\mathbf{E} = \mathbf{N}_{\mathbf{A}} (\mathbf{K}.\mathbf{E})_{av}$$

$$E = (6.02 \times 10^{23}) (5.858 \times 10^{-21})$$

$$E = 3521.7 J$$

Kinetic energy per mole at 40 °C

$$\mathbf{E} = \mathbf{N}_{A} (K.E)_{av}$$

$$E = (6.02 \times 10^{23}) (6.479 \times 10^{-21})$$

$$E=3900.35J$$