UNIT = 16 FIRST LAW OF THERMODYNAMICS

BOOK NUMERICAL

1. A gas undergoes isothermal expansion at a constant temperature of 300 K. If the gas absorbs 500 J of heat during the process, calculate the work done by the gas.

Data:

T = 500 k

 $\Delta Q = 500I$

 $\Delta W = ?$

SOLUTION:

According to first law of thermodynamics

$$\Delta Q = \Delta U + \Delta W$$

In an isothermal process, the change in internal energy (ΔU) of an ideal gas is zero

$$500 = 0 + \Delta W$$

$$500 J = \Delta W$$

A piston compresses a gas isothermally. If the initial volume is 0.02 m³ and the final volume is 0.01 m³, and the initial pressure is 200 kPa, determine the final pressure. Assume the gas behaves ideally.

Data:

$$V_1 = 0.02 \ m^3$$

$$V_2 = 0.01 \, m^3$$

$$P_1 = 200 \ KPa = 200 \times 10^3 \ Pa$$

$$P_1 = 2.0 \times 10^5 Pa$$

$$P_2 = ?$$

SOLUTION:

In an isothermal process, the temperature is kept constant

According to Boyle's law

$$\mathbf{P_1} \ \mathbf{V_1} \ = \mathbf{P_2} \ \mathbf{V_2}$$

$$2.0 \, \times \, 10^5 \, \times \, 0.02 \, = P_2 \, \times 0.01$$

$$\frac{2.\,0\,\times\,10^5\,\times\,0.\,02}{0.\,01} = P_2$$

$$4.0 \times 10^5 \text{ Pa} = P_2$$

A system undergoes an isobaric process, keeping the pressure constant at 15 kPa. If the volume increases from 0.05 m³ to 0.08 m³, and the change in its internal energy is 150 J. Calculate the heat added to the system

DATA:

$$P = 15 KPa = 15 \times 10^3 Pa$$

$$P = 1.5 \times 10^4 Pa$$

$$V_1 = 0.05 \text{ m}^3$$

$$V_2 = 0.08 \text{ m}^3$$

$$\Delta U = 150 J$$

$$\Delta Q = ?$$

SOLUTION:

In an isobaric process,

$$\Delta W = P \, \Delta V$$

According to first law of thermodynamics

$$\Delta O = \Delta U + P \Delta V$$

$$\Delta \mathbf{Q} = \Delta \mathbf{U} + \mathbf{P}(V_2 - V_1)$$

$$\Delta Q = (150) + 1.5 \times 10^4 (0.08 - 0.05)$$

$$\Delta Q = (950) + 1.5 \times 10^4 (0.03)$$

$$\Delta Q = 150 + 450 = 5450 J$$

$$\Delta Q = 600 J$$

During an isochoric process, the internal energy of a gas increases by 300 J. If no work is done, determine the heat added to the system.

Data:

$$\Delta U = 300I$$

$$\Delta Q = ?$$

SOLUTION

During an isochoric process, the volume remains constant, meaning no work is done on or by the system

$$\Delta W = 0$$

According to first law of thermodynamics

$$\Delta Q = \Delta U + \Delta W$$

$$\Delta W = 0$$

$$\Delta \mathbf{Q} = \mathbf{300} + \mathbf{0}$$

$$\Delta Q = 300 J$$

A gas undergoes a cyclic process, starting at point A with a volume of 0.02 m³, going to B (isochoric heating), then to C (isothermal expansion), and back to A. If the heat added during isothermal expansion is 1000 J and the heat rejected during isochoric heating is 500 J, calculate the net work done by the system.

SOLUTION

the net work done by the system during the cyclic process, we can use the first law of thermodynamics, which states:

$$\Delta Q = \Delta U + \Delta W$$

In a cyclic process, the change in internal energy

$$\Delta U = 0$$

$$\Delta Q = 0 + \Delta W$$

$$\Delta \boldsymbol{Q} = \Delta \boldsymbol{W} \dots \dots (\boldsymbol{i})$$

Heat added during isothermal expansion

$$Q_{in} = 1000 J$$

Heat rejected during isochoric heating

$$Q_{out} = 500 J$$

$$\Delta \mathbf{Q} = \mathbf{Q}_{in} - \mathbf{Q}_{out}$$

$$\Delta Q = 1000 - 500 = 500 J$$

Substituting the expression of ΔQ in equation (i), we get

$$\Delta W = 500 J$$

A gas expands from 0.03 m³ to 0.06 m³ against a constant pressure of 10 kPa. Calculate the work done in both a reversible and an irreversible process, and compare the results

DATA
$$V_1 = 0.03 m^3$$
 $V_2 = 0.06 m^3$
 $P = 10 KPa = 10 \times 10^3 Pa$
SOLUTION

The work done by a gas during expansion at constant pressure can be calculated using the formula

$$\Delta W = P \Delta V$$
$$\Delta W = P(V_2 - V_1)$$

$$\Delta W = 10 \times 10^3 (0.06 - 0.03)$$

$$\Delta W = 10 \times 10^3 (0.03)$$

$$\Delta W = 300J$$

In both reversible and irreversible processes, under constant pressure, the work done will be the same because it depends solely on the pressure and the volume change.

A 50 g piece of copper at 100 °C is placed in 200 g of water at 20 °C. if the final temperature of the system is measured at 21.8 °C. Calculate the specific heat of copper?

Data:

$$\mathbf{m}_c = \mathbf{50} \, \mathbf{g}$$

 $\mathbf{m}_w = \mathbf{200} \, \mathbf{g}$
 $\boldsymbol{C}_w = 4.18 \, J/g^\circ C$

$$C_c = ?$$
 $T_1 = 100 \, ^{\circ}\text{C}$
 $T_2 = 20 \, ^{\circ}\text{C}$
 $T_{mix} = 21.82 \, ^{\circ}\text{C}$

SOLUTION

Heat lost by copper = heat absorbed by water + heat absorbed by the calorimeter

$$m_C C_c \Delta T = m_w C_w \Delta T$$
 $m_C C_c (T_1 - T_{mix}) = m_w C_w (T_{mix} - T_2)$
 $50 \times C_c (100 - 21.82) = 200 \times 4.18 (21.82 - 20)$
 $50 \times C_c (78.18) = 200 \times 4.18 (1.82)$
 $3909 \times C_c = 1521.52$
 $C_c = \frac{1521.52}{3909}$
 $C_c = 0.389 \ J/g ^\circ C$

Corrected numerical 7

A Student in a physics lab is to determine the specific heat of copper experimentally, he heats a 150 g piece of copper at 100 °C and then carefully pours the piece of copper into a calorimeter cup, Containing 200 g of water at 20 °C. The final temperature of the mixture in the cup is measured at 25 °C. If the aluminum has a mass of 45 g. What is the specific heat of copper?

Data:

$$m_c = 150 \text{ g} = 0.15 \text{ kg}$$

 $m_w = 200 \text{ g} = 0.200 \text{ kg}$
 $C_w = 4186 J/kg$ °C
 $m_{Al} = 45 g = 0.045 kg$

$$C_{Al} = 920 \ J/kg^{\circ}C$$
 $T_{1} = 100 \, ^{\circ}C$
 $T_{2} = 20 \, ^{\circ}C$
 $T_{mix} = 25 \, ^{\circ}C$

SOLUTION

Heat lost by copper = heat absorbed by water + heat absorbed by the calorimeter

$$\mathbf{m}_{C} \, \mathbf{C}_{C} \, \Delta \mathbf{T} = \mathbf{m}_{W} \, \mathbf{C}_{W} \, \Delta \mathbf{T} + \, \mathbf{m}_{Al} \, \mathbf{C}_{Al} \, \Delta \mathbf{T}$$

$$\mathbf{m}_{C} \, \mathbf{C}_{C} \, (\mathbf{T}_{1} - \mathbf{T}_{mix}) = \mathbf{m}_{W} \, \mathbf{C}_{W} \, (\mathbf{T}_{mix} - \mathbf{T}_{2}) + \, \mathbf{m}_{Al} \, \mathbf{C}_{Al} \, (\mathbf{T}_{mix} - \mathbf{T}_{2})$$

$$\mathbf{0} \, \mathbf{15} \times \mathbf{C}_{C} \, (\mathbf{100} - \mathbf{25}) = \mathbf{0} \, \mathbf{2} \times \, \mathbf{4186} \, (\mathbf{25} - \mathbf{20}) + \, \mathbf{0} \, \mathbf{045} \times \mathbf{920} \, (\mathbf{25} - \mathbf{20}) + \, \mathbf{0} \, \mathbf{045} \times \mathbf{920} \, (\mathbf{25} - \mathbf{20}) + \, \mathbf{0} \, \mathbf{045} \times \mathbf{920} \, (\mathbf{25} - \mathbf{20}) + \, \mathbf{0} \, \mathbf{045} \times \mathbf{920} \, (\mathbf{25} - \mathbf{20}) + \, \mathbf{0} \, \mathbf{045} \times \mathbf{920} \, (\mathbf{25} - \mathbf{20}) + \, \mathbf{0} \, \mathbf{045} \times \mathbf{920} \, (\mathbf{25} - \mathbf{20}) + \, \mathbf{0} \, \mathbf{045} \times \mathbf{920} \, (\mathbf{25} - \mathbf{20}) + \, \mathbf{0} \, \mathbf{045} \times \mathbf{920} \, (\mathbf{25} - \mathbf{20}) + \, \mathbf{0} \, \mathbf{045} \times \mathbf{920} \, (\mathbf{25} - \mathbf{20}) + \, \mathbf{0} \, \mathbf{045} \times \mathbf{920} \, (\mathbf{25} - \mathbf{20}) + \, \mathbf{0} \, \mathbf{045} \times \mathbf{920} \, (\mathbf{25} - \mathbf{20}) + \, \mathbf{0} \, \mathbf{045} \times \mathbf{920} \, (\mathbf{25} - \mathbf{20}) + \, \mathbf{0} \, \mathbf{045} \times \mathbf{920} \, (\mathbf{25} - \mathbf{20}) + \, \mathbf{0} \, \mathbf{045} \times \mathbf{920} \, (\mathbf{25} - \mathbf{20}) + \, \mathbf{0} \, \mathbf{045} \times \mathbf{920} \, (\mathbf{25} - \mathbf{20}) + \, \mathbf{0} \, \mathbf{045} \times \mathbf{920} \, (\mathbf{25} - \mathbf{20}) + \, \mathbf{0} \, \mathbf{045} \times \mathbf{920} \, (\mathbf{25} - \mathbf{20}) + \, \mathbf{0} \, \mathbf{045} \times \mathbf{920} \, (\mathbf{25} - \mathbf{20}) + \, \mathbf{0} \, \mathbf{045} \times \mathbf{920} \, (\mathbf{25} - \mathbf{20}) + \, \mathbf{0} \, \mathbf{045} \times \mathbf{920} \, (\mathbf{25} - \mathbf{20}) + \, \mathbf{0} \, \mathbf{045} \times \mathbf{920} \, (\mathbf{25} - \mathbf{20}) + \, \mathbf{0} \, \mathbf{045} \times \mathbf{920} \, (\mathbf{25} - \mathbf{20}) + \, \mathbf{0} \, \mathbf{045} \times \mathbf{920} \, (\mathbf{25} - \mathbf{20}) + \, \mathbf{0} \, \mathbf{045} \times \mathbf{920} \, (\mathbf{25} - \mathbf{20}) + \, \mathbf{0} \, \mathbf{045} \times \mathbf{920} \, (\mathbf{25} - \mathbf{20}) + \, \mathbf{0} \, \mathbf{045} \times \mathbf{920} \, (\mathbf{25} - \mathbf{20}) + \, \mathbf{0} \, \mathbf{045} \times \mathbf{920} \, (\mathbf{25} - \mathbf{20}) + \, \mathbf{0} \, \mathbf{045} \times \mathbf{0} + \, \mathbf{0} \, \mathbf{045} + \,$$

$$0.15 \times C_c \ (100 - 25) = 0.2 \times 4186 \ (25 - 20) + 0.045 \times 920 \ (25 - 20)$$

$$0.15 \times C_c$$
 (75) = 0.2×4186 (5) + 0.045×920 (5)

$$11.25 \times C_c = 4186 + 207$$

$$11.25 \times C_c = 4393$$

$$C_c = \frac{4393}{11.25}$$

$$C_c = 390.4 J / kg \, ^{\circ}C$$

8 How much heat is required to raise the temperature of 1 kg of lead from 25 0 C to 100 0 C? (specific heat of lead = 0.128 J/g 0 C)

Data: $m_{lead} = 1 \text{ kg} = 1000 \text{ kg}$ $T_1 = 25 \text{ °C}$ $T_2 = 100 \text{ °C}$ $C_{lead} = 0.128 J/g \text{ °C}$ $\Delta Q = ?$

SOLUTION
$$\Delta Q = m_{lead} C_{lead} \Delta T$$

$$\Delta Q = m_{lead} C_{lead} (T_2 - T_1)$$

$$\Delta Q = (1000) (0.128) (100 - 25)$$

$$\Delta Q = (1000) (0.128) (75)$$

$$\Delta Q = 9600 J$$

UNIT = 16 FIRST LAW OF THERMODYNAMICS

WORKED EXAMPLE

The volume occupied by 1.00 mol of a liquid at 50 °C is 2.4 x 10^{-5} m³. When the liquid is vaporized at an atmospheric pressure of 1.03 x 10^{5} Pa, the vapor has a volume of 5.9×10^{-2} m³. The latent heat to vaporize 1.00 mol of this liquid at 50 °C and at atmospheric pressure is 3.48 x 10^{4} J. Determine the change in internal energy ΔU of the system.

DATA: $n = 1.00 \ mole$ $V_1 = 2.4 \times 10^{-5} \ m^3$ $P = 1.03 \times 10^5 \ Pa$ $V_2 = 5.9 \times 10^{-2} \ m^3$ $L_V = 3.48 \times 10^4 \ J$ $\Delta U = ?$ SOLUTION:

The work done is given by

$$\Delta W = P \Delta V$$

$$\Delta W = P(V_2 - V_1)$$
 $\Delta W = 1.03 \times 10^5 (5.9 \times 10^{-2} - 2.4 \times 10^{-5})$
 $\Delta W = 1.03 \times 10^5 (0.05897)$
 $\Delta W = 6.074 \times 10^3 J$
According to first law of thermodynamics
 $3.48 \times 10^4 = \Delta U + 6.074 \times 10^3$
 $\Delta U = 3.48 \times 10^4 - 6.074 \times 10^3$
 $\Delta U = 2.872 \times 10^3 J$

When a balloon is inflated, its rubber walls push against the air around it. Calculate the work done when the balloon is blown up from 0.015 m^3 to 0.030 m^3 . Atmospheric pressure= $1.0 \times 10^5 \text{ Pa}$.

DATA:
$$V_1 = 0.015 \, \text{m}^3$$
 $V_2 = 0.030 \, \text{m}^3$ $V_3 = 1.0 \times 10^5 \, (0.030 - 0.015)$ $\Delta W = 1.0 \times 10^5 \, (0.015)$ $\Delta W = 1.0 \times 10^5 \, (0.015)$ $\Delta W = 1.0 \times 10^5 \, (0.015)$ $\Delta W = 1500 \, J$ $\Delta W = P \, \Delta V$

The normal human body temperature is 36.88 °C. What is this temperature on the Fahrenheit scale? A gas confined in a cylinder undergoes an expansion from an initial volume of 2.0 L to a final volume of 4.0 L against a constant external pressure of 2.0 atm. Calculate the work done by the gas during this process.

DATA:

$$T_{^{\circ}\text{C}} = 36.88\,^{\circ}\text{C}$$

$$T_{\rm \circ F} = ?$$

$$V_1 = 4.0 L$$

$$V_1 = 4.0 \times 0.001 = 0.004 \, m^3$$

$$V_2 = 2.0 L$$

$$V_1 = 2.0 \times 0.001 = 0.002 \, m^3$$

$$P = 2 atm = 2 \times 1.01 \times 10^5 Pa$$

$$P = 2.02 \times 10^5 Pa$$

$$\Delta W = ?$$

SOLUTION:

Celsius to Fahrenheit

$$T_{\rm \circ_F} = \frac{9}{5} \times T_{\rm \circ_C} + 32$$

$$T_{\rm °F} = \frac{9}{5} \times (36.88) + 32$$

$$T_{\rm °F} = 66.38 + 32$$

$$T_{\circ_{\rm F}} = 98.38 \, {}^{\circ}{\rm F}$$

The work done is given by

$$\Delta W = P \Delta V$$

$$\Delta \mathbf{W} = \mathbf{P}(V_2 - V_1)$$

$$\Delta W = 2.02 \times 10^5 (0.004 - 0.002)$$

$$\Delta W = 2.02 \times 10^5 (0.002)$$

$$\Delta \mathbf{W} = \mathbf{404} \, \mathbf{J}$$

4 Calculate the molar specific heat capacity of a gas when 2 moles of the gas absorb 1500 J of heat energy and its temperature increases by 25 degrees Celsius.

DATA:

$$n = 2 mol$$

$$Q = 1500 J$$

$$\Delta T = 25$$
 °C

$$\Delta W = ?$$

SOLUTION:

$$\mathbf{Q} = \mathbf{n} \mathbf{C} \Delta \mathbf{T}$$

$$1500 = 2 \times C \times 25$$

$$1500 = 50 \times C$$

$$C = 30 J/kg$$
 °C

A sample of water with a mass of 200 grams is heated, and its temperature rises from 25 °C to 45 °C. Calculate the heat transferred to the water. Given the specific heat capacity of water (c) is 4.18 J/g °C.

Data:
$$m_w = 200 \, g$$
 SOLUTION
 $Q = m_w \, C_w \, \Delta T$
 $T_1 = 25 \, ^{\circ}\text{C}$
 $Q = m_w \, C_w \, (T_2 - T_1)$
 $T_2 = 45 \, ^{\circ}\text{C}$
 $Q = (200) \, (4.18) \, (45 - 25)$
 $Q = ?$
 $Q = (200) \, (4.18) \, (20)$
 $Q = (200) \, (4.18) \, (20)$

An electric heater supplies 1800 W of power supply heat to a tank of water. How long will it take to heat 200 kg of water in the tank from 10°C to 70°C?

