PHYSICS-XI

UNIT-2 ONE DIMENSIONAL KINEMATICS

A dog trots back to its owner with an average speed of 1.40 m/s from a distance of 2.3 m. How much time does it take for the dog to reach its owner?

[1.6 s]

(a) A certain car can go from 0 to 30 m/s in 8.50 s. What is the average acceleration of this car in meters per second squared? [3.52 m/s²] (b). An airplane has an average acceleration of 4.2 m/s² during takeoff. If the aircraft starts at rest, how long does it take to reach a speed of 180 km/h? [11,9 m/s]

3. A ball is thrown straight upward with an initial velocity of 19.6 m/s. Find the velocity of the ball after (a) 0.45 s and (b) 1.90 s.

- 4. A lemon drops from a tree and falls to the ground 3:15 m below. (a) How much time does it take for the lemon to reach the ground? (b) What is the lemon's speed just before it hits the ground? [0.81 s, 7.86 m]
- A bullet is moving at a speed of 120 m/s when it embeds into a lump of moist clay. The bullet penetrates for a distance of 62 cm. Determine the acceleration of the bullet while moving into the clay.

 [-1.16 x 0⁴ m/s²]

A stone is directly thrown vertically upward. It takes 30 sec to return to the ground, how high does the stone go? [1.1 x 10³ m]

A minibus starts moving from a position of the rest at a bus stop with uniform acceleration. During the 10th seconds of its motion, it covers a distance of 95 meters. Calculate its acceleration and the total distance it covers.

[10 m/s² , 500 m]

- A car starts from rest and moves with a constant acceleration. During the 5th second of its motion it covers a distance of 36m; calculate:
 - (i) The acceleration of the car $\,$ (ii) The total distance covered by the car during this time. [8 m/s^2 , 100 m]
- A boy throws a ball upward from the top of a tower with a speed of 12m/s. On the way down it just misses the thrower and falls to the ground 50m below. Find how long the ball remains in the air.

 [4.64 s]
- A stone is dropped from the peak of a hill. It covers a distance of 30m in the last second of its motion, find the height of the peak. [62 m]
- 11 A car starts from rest and moves with a constant acceleration. During the 4th second of its motion, it covers a distance of 24 meters. Calculate the acceleration and the total distance covered by the car during this time.

[6.86m/s2, 54.86m]

A ball is thrown vertically upward from the ground with a speed of 25m/s. On the way down it is caught at a point 5m above the ground. How long did the trip take?

[4.89 s]

PHYSICS-

SCALARS AND VECTORS

Find the value of 'p' for which the following vectors are perpendicular to each

other: $\vec{A} = \hat{i} + P\hat{j} + 3\hat{k}$ and $\vec{B} = 3\hat{i} + 3\hat{j} - 4\hat{k}$

- Find the work done in moving an object along a vector $\vec{r} = 3\vec{i} + 2\vec{j} 5\vec{k}$ if the applied force is $\vec{F} = 2\vec{i} - \vec{j} - \vec{k}$
- Two forces of equal magnitude are acting at a point; find the angle between the two forces when the magnitude of the resultant is also equal to the magnitude of either of these forces. [120⁰]
- Two forces of magnitude 10N and 15N are acting at a point. The magnitude of their resultant is 20N; find the angle between them. $[75.5^{\circ}]$
- If one of the rectangular components of a force of 100N is 50N, find the other component. [86.6 N]
- Prove that $|\overrightarrow{A} \times \overrightarrow{B}|^2 + (A.B)^2 = A^2B^2$.
- Two vectors A and B are such that $|\vec{A}| = 4$ and $|\vec{B}| = 6$ and $\theta = 60^{\circ}$.

Find $|\vec{A} + \vec{B}|$ and $|\vec{A} - \vec{B}|$

PROJECTILE MOTION

- At what suitable angle is the maximum height of the projectile 1/3 of its range? [53.1°]
- At what suitable angle is the maximum height of the projectile equal to its range. [75.90]
- Find the initial velocity of a rocket if it hits the maximum target 100 km away.
- [990 m/s] A shell is shot from a gun with a speed of 120 m/s at an angle of 60° with the horizontal. Find the following:
 - (i) Time taken to reach the maximum height
- Total time of flight 10.6 s, 21.2 s, 1.27x 10³ m (iii) Horizontal range
- A mortar shell is fired at a ground-leventarget 490m away with an initial velocity of 5 98m/s. Find the two possible values of the launch angle. Calculate the minimum time to hit the target. [15°, 75°, 2.588 sec]
- A bullet was fired horizontally at 20m/s from the top of a building 20m high. When the bullet was 10m above ground, accidentally it hit a bird. Find the time taken to hit the bird and the velocity of the bullet when it hits the bird.

[1.42sec, 24.4 m/s]

- Two possible angles to hit a target by a mortar shell fired with an initial velocity of 98 m/s are 15° and 75°. Calculate the range of the projectile and the minimum time required to hit the target. [490m, 5.176s]
- What is the take-off speed of a locust if its launching angle is 55° and its range is 0.8m? [2.88m/s]