PHYSICS-XI

COULOMB'S LAW

- Determine the electrical force that two protons in the nucleus of a helium atom exert on each other when separated by 2×10^{-15} m. [6.27 x 10^{-15} N]
- 2 Find the electric force between two 5.00-C charges separated by 1.00 m.

[2.25 x 10 ¹¹ N]

- 3. A charge q_1 = -6.5 μ C is at the origin, and a charge q_2 = -2.42 μ C is on the x axis at x = 1.00 m. Find the net force acting on a charge q_3 = +1.4 μ C located at x = 0.55 m.
- 4. The electron and proton of a hydrogen atom are separated (on average) by a distance of approximately 5.3 x 10⁻¹¹ m. Find the magnitudes of the electric force between the two particles. [8.2 x 10⁻⁸ N]
- 6 How many electrons should be removed from each of the two similar spheres each of 10 grams, so that the gravitational force balances electrostatic repulsion

[5.38 x 10⁶ electron]

7 Two-point charges 1x10⁻⁴ C and -1x10⁻⁴ C are placed at a distance of 40cm from each other. A charge of 6x 10⁻⁵ C is placed midway between them. What is the magnitude and direction of force on it? [F=2700 N].

ELECTRIC FIELD

- If the +2.80 μ C charge experiences a force of 0.21 N, what is the magnitude of the electric field? [7.5 x 10⁴ N/C]
- 2 What is the force on an electron at a point where the electric field is 5 X 10⁵ N/C

[8x10⁻¹⁴ N]

- Find the electric field produced by a 2.9 μ C point charge at a distance of (a) 1.0 m and (b) 2.0 m. [2.6 x 10⁴ N/C, 0.65 x 10⁴ N/C]
- Two-point charges are separated by a distance of 10cm one has a charge of -25μC and the other +50μC. What is the direction and magnitude of the electric field at a point P between them, 2cm from the negative charge?

[6.32 x 107 N/C]

A water droplet of mass 3.0×10^{-12} kg is located in the air near the ground during a stormy day. An atmospheric electric field of magnitude 6.0×10^3 N/C points vertically downward in the vicinity of the water droplet. The droplet remains suspended at rest in the air. What is the electric charge on the droplet?

[4.9 x 10⁻¹⁵ C]

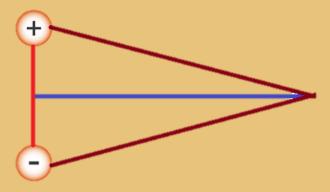
PHYSICS-XI

ELECTRIC FIELD AND ELECTRIC POTENTIAL

A proton of mass 1.67 x 10 $^{-27}$ kg and charge 1.6 x 10 $^{-19}$ is to be held motionless between two horizontal parallel plates 10cm apart. Find the voltage required to be applied between the plates [1.02 x 10 $^{-8}$ V]

The electric potential difference between two parallel plates 4.2cm apart is 240V. What is the magnitude of the electric field between them?

[5.71 x 10³ N/C]


- The electric field between the parallel plates connected to a 45V battery is 1500V/m. How far apart are the plates? [0.030 m]
- 4. An electron of charge 1.6×10^{-19} C is situated in a uniform electric field of intensity 1200-volt cm. Find the force on it, its acceleration, and the time it takes to travel 2 cm from rest (electronic mass, m, = 9.1×1031 kg).

$$\left[1.92 \times 10^{-14} \, \text{N} , 2.109 \times 10^{16} \, \text{m/s}^2, 1.37 \times 10^{-9} \, \text{s}\right]$$

5 Two parallel plates are charged to voltage 50V of the separation between the plates is 50cm. Calculate the electric field between them.

ELECTRIC FIELD DUE TO DIPOLE

- 1. A proton and an electron from two corners of an equilateral triangle of side length 8 \times 10 ⁻⁶ m. What is the magnitude of the net electric field of these two particles at the third corner?
- 2. Figure show two charges particle $q = +6.4 \times 10^{-19}$ C and $q = -6.4 \times 10^{-19}$ C are separated by a distance 5m. What are the magnitude and direction of the net electric field at point P at x = 8 m

A proton and an electron from two corners of an equilateral triangle of side length 6 x10 -6 m. What is the magnitude of the net electric field of these two particles at the third corner?