

# BOARD OF INTERMEDIATE EDUCATION, KARACHI SECTION " A"Solution of MCQ's

#### **Annual Examination 2024**

| Subject | PHYSICS | Part I (New Course)          |
|---------|---------|------------------------------|
|         |         |                              |
| Marks   | 17      | Group Pre- Engg/ Pre Medical |

| r.No  | and the second second                  | Sr.No | Calculation of the second |
|-------|----------------------------------------|-------|---------------------------|
| i.    | 1                                      | x.    | Work                      |
| ii.   | Zero                                   | xi.   | Volume                    |
| iii.  | Increase                               | xii.  | 4 times                   |
| iv.   | Modulation                             | xiii. | Remains same              |
| v.    | Thermistor                             | xiv.  | Dercrease                 |
| vi.   | (a),(c) and (d)                        | xv.   | Exponential law           |
| vii.  | 45°                                    | xvi   | Energy                    |
| viii. | Force                                  | xvii  | $V_m > V_h > V_\alpha$    |
| ix.   | $\left(\frac{\pi}{180}\right)$ radians |       |                           |
|       |                                        |       |                           |

(Prof.Tariq Salahuddin) 03332466651

(Prof Asif Raza) 03002126733 (Signature of Head Examiner)



## BOARD OF INTERMEDIATE EDUCATION, KARACHI

### Solution and Instruction of Sections "B" & "C"

### **Annual Examination 2024**

Subject PHYSICS Part I (New Course)

Marks 36 (Section B) Group Pre- Engg/ Pre Medical

| Q.No.2 |                                                                                                                                                                                                                                                     |                        |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| i)     | <ul> <li>Free body diagram,         (01) mark</li></ul>                                                                                                                                                                                             | Nain0=Fc = Fnet        |
| ii)    |                                                                                                                                                                                                                                                     | og =W<br>(O1) mark     |
|        | Solution: Coulomb's electrostatic force = Weight of proton $ \frac{Kq_1q_2}{r^2} = mg \qquad \text{since, } q_1 = q_2 $ $ r^2 = \frac{Kq^2}{mg} = \frac{9 \times 10^9}{1.67 \times 10^{-27} \times 9.8} \times (1.6 \times 10^{-19})^2 = 0.014078 $ | (01) mark<br>(01) mark |

Prof. Tariq Salahuddin) 03332466651

| 2.No.2    | Solution and Instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                              |  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|
| lii)      | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 22                                                                                                         |  |
|           | Diagram Kirchoff's first law Diagram Kirchoff (01) mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | f's second law<br>(01) mark                                                                                  |  |
|           | Kirchoff's (Ist Law) Junction rule or current law "the total of the currents that flows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                              |  |
|           | into a junction is equal to the sum of currents flows outside the circuit".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e junction in a                                                                                              |  |
|           | $\sum I_{in} = \sum I_{out}$ or $I_1 + I_2 = I_3$ or $\sum I_1 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (01) marl                                                                                                    |  |
|           | 에 어떤 귀하는 것이 하는 것이 아니는 살이지만 있는데 모든 모든 모든 사람이 되었다면 하는데 하는데 그 사람이 되었다면 하는데 하는데 되었다.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                              |  |
|           | Kirchoff's (2 <sup>nd</sup> Law) Loop rule or voltage law "sum of electromotive i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | orces in a loop                                                                                              |  |
|           | Kirchoff's ( $2^{nd}$ Law) Loop rule or voltage law "sum of electromotive for equals the sum of the potential drops in the loop" $\sum E = \sum V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | forces in a loop<br>(01) mark                                                                                |  |
| iv)       | .1. 그래 이 이 이 가격 고객들이 마음 하는 데 가는 것으로 된다면 하는 이                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                              |  |
| iv)       | equals the sum of the potential drops in the loop" $\sum E = \sum V$ Data:  R = 500 m  v = 90 ms <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (01) marl                                                                                                    |  |
| iv)       | equals the sum of the potential drops in the loop" $\sum E = \sum V$ Data: $R = 500 \text{ m}$ $V = 90 \text{ ms}^{-1}$ $\theta = ?$ Solution: $R = \frac{v^2 \sin 2\theta}{r^2} \implies \sin 2\theta = \frac{Rg}{r^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (01) marl                                                                                                    |  |
| iv)       | equals the sum of the potential drops in the loop" $\sum E = \sum V$ Data: $R = 500 \text{ m}$ $v = 90 \text{ ms}^{-1}$ $\theta = ?$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (01) mark                                                                                                    |  |
| i♥)<br>♥) | equals the sum of the potential drops in the loop" $\sum E = \sum V$ Data: $R = 500 \text{ m}$ $v = 90 \text{ ms}^{-1}$ $\theta = ?$ Solution: $R = \frac{v^2 \sin 2\theta}{g} \Rightarrow \sin 2\theta = \frac{Rg}{v^2}$ $2\theta = \sin^{-1}(\frac{Rg}{v^2}) = \sin^{-1}(\frac{500 \times 9.8}{90^2}) = 37.22^\circ$ $\theta = 18.61^\circ$ for launch angle; $\alpha = 90^\circ - 18.61^\circ = 71.39^\circ$ Charging of a capacitor always involves some expenditure of envoltage source. This energy is stored up in the electrostatic field dielectric medium (between the two conductors). When the capacitor to some external circuit (discharging) the stored energy is used in          | (01) mark (01) mark (01) mark (01) mark ergy from the set up in the r is connected in moving the             |  |
|           | equals the sum of the potential drops in the loop" $\sum E = \sum V$ Data: $R = 500 \text{ m}$ $v = 90 \text{ ms}^{-1}$ $\theta = ?$ Solution: $R = \frac{v^2 \sin 2\theta}{g} \Rightarrow \sin 2\theta = \frac{Rg}{v^2}$ $2\theta = \sin^{-1}(\frac{Rg}{v^2}) = \sin^{-1}(\frac{500 \times 9.8}{90^2}) = 37.22^\circ$ $\theta = 18.61^\circ$ for launch angle; $\alpha = 90^\circ - 18.61^\circ = 71.39^\circ$ Charging of a capacitor always involves some expenditure of envoltage source. This energy is stored up in the electrostatic field dielectric medium (between the two conductors). When the capacitor to some external circuit (discharging) the stored energy is used in charges. | (01) mark (01) mark (01) mark (01) mark ergy from the set up in the r is connected in moving the (1.5) marks |  |
| iv)       | equals the sum of the potential drops in the loop" $\sum E = \sum V$ Data: $R = 500 \text{ m}$ $v = 90 \text{ ms}^{-1}$ $\theta = ?$ Solution: $R = \frac{v^2 \sin 2\theta}{g} \Rightarrow \sin 2\theta = \frac{Rg}{v^2}$ $2\theta = \sin^{-1}(\frac{Rg}{v^2}) = \sin^{-1}(\frac{500 \times 9.8}{90^2}) = 37.22^\circ$ $\theta = 18.61^\circ$ for launch angle; $\alpha = 90^\circ - 18.61^\circ = 71.39^\circ$ Charging of a capacitor always involves some expenditure of envoltage source. This energy is stored up in the electrostatic field dielectric medium (between the two conductors). When the capacitor to some external circuit (discharging) the stored energy is used in          | (01) mark (01) mark (01) mark (01) mark ergy from the set up in the r is connected in moving the (1.5) marks |  |

(Prof.Tariq Salahuddin) 03332466651

Salahut Z.

(Prof.Asif Paza) 03062126733 (Signature of Head Examiner)

| Q.No.2 | Solution and Instructions                                                                                                                                                                                                                                                                                                                   | 1           |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| vi)    | Definition of escape velocity.                                                                                                                                                                                                                                                                                                              | (01) mark   |
|        | Derivation of equation $v_{cs} = \sqrt{2gR}$ with necessary mathematical steps.                                                                                                                                                                                                                                                             |             |
|        | Zerranen er equation see v                                                                                                                                                                                                                                                                                                                  | (03) marks  |
|        |                                                                                                                                                                                                                                                                                                                                             |             |
| vii)   | Data:<br>$A_1 = 10 \text{ cm}^2 = 0.001 \text{m}^2$<br>$F_1 = 50 \text{ N}$<br>$A_2 = ?$<br>$F_2 = 4800 \text{ N}$                                                                                                                                                                                                                          | (01) mark   |
|        | Solution: $\frac{F_2}{F_1} = \frac{A_2}{A_1} \Rightarrow A_2 = \frac{F_2}{F_1} \times A_1$<br>$A_2 = \frac{4800}{50} \times 0.001 = 0.096 \text{ m}^2 = 960 \text{ cm}^2$                                                                                                                                                                   | (01) mark   |
|        | $A_2 = \frac{4000}{50} \times 0.001 = 0.096 \text{ m}^2 = 960 \text{ cm}^2$                                                                                                                                                                                                                                                                 | (02) marks  |
| viii)  | Data:  f = 3 Hz  µ= 0.72  x <sub>0</sub> =?                                                                                                                                                                                                                                                                                                 | (01) mark   |
|        | Solution: $a = \omega^2 x_0$ and $F = \mu mg$<br>$ma = \mu mg$ $\therefore$ $a = \mu g$<br>hence $\mu g = \omega^2 x_0$ $\therefore$ $\omega = 2\pi f$                                                                                                                                                                                      | (1.5) marks |
|        | $x_0 = \mu g/(2\pi f)^2$ $x_0 = 0.72 \times 9.8/(2 \times 3.142 \times 3)^2 = 0.0198 \text{ m}$                                                                                                                                                                                                                                             | (1.5) marks |
| ix)    | Ray Diagram Why X-rays?  X-rays has wavelengths much shorter than those of visible light, comparable to the separation between the atomic planes of crystalline solids like NaCl crystal.  (01) mark  Derivation of m \(\lambda = 2\dsin\theta\) with necessary steps.  (02) marks  Note: The letters in figure (A.B.C.D) are not sensitive | d d         |

(Prof.Tariq Salahuddin) 03332466651

03002126733

| Q.No.2      | Solution and Instructions                                                                                                                                 | TO A STATE OF THE PARTY AND A STATE OF THE PAR |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| x)          | Data:<br>$r = 0.1 \text{ mm} = 1 \times 10^{-4} \text{ m}$<br>$\eta = 1.8 \times 10^{-5} \text{ Pa.s}$<br>$\rho = 850 \text{ kg}/\text{m}^3$<br>$F_d = ?$ | (01) mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| - 10<br>- 1 | Solution: By Stoke's Law $F_d = 6\pi \eta r v_t$ $v_t = \frac{2\rho g r^2}{9\eta}$                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | $\therefore F_d = 6\pi r^3 \times \frac{2\rho g}{9}$                                                                                                      | (01) mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | $F_d = 6 \times 3.142 \times (1 \times 10^{-4})^3 \times \frac{2 \times 850 \times 9.8}{9} = 3.489 \times 10^{-8} \text{ N}$                              | (02) marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| xi)         | Data:                                                                                                                                                     | (01) mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ,           | L = 20 m<br>A = 1 mm <sup>2</sup> = 1 x 10 <sup>-6</sup> m <sup>2</sup><br>R = 5 $\Omega$<br>$\sigma$ = ?                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | Solution: $\sigma = \frac{L}{RA}$                                                                                                                         | (01) mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | $\sigma = \frac{20}{5 \times 1 \times 10^{-6}} = 4 \times 10^{6} \text{ Siemens/m}$                                                                       | (02) marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| xii)        | Statement: In the absence of an external force the total momentum                                                                                         | n of the system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | before and after collision remains constant.                                                                                                              | (01) mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | Data:<br>$m_1 = 100 \text{ g} = 0.1 \text{ kg}$<br>$m_2 = 10 \text{ kg}$                                                                                  | (01) marl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | $u_{1} = 0$ $u_{2} = 0$ $v_{1} = 1000 \text{ ms}^{-1}$ $v_{2} = ?$                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | Solution: $m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$                                                                                                             | (01) mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | $v_2 = \frac{m_1 u_1 + m_2 u_2 - m_1 v_1}{m_2} = \frac{0.1 \times 0 + 10 \times 0 - 0.1 \times 1000}{10} = -10 \text{ms}^{-1}$                            | (01) mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

(Prof. Tariq Salahuddin)
03332466651

(Prof. Asif Raza)

03002126733



| Q.No.2 | Solution ar                                                                                 | d Instructions                    |  |
|--------|---------------------------------------------------------------------------------------------|-----------------------------------|--|
| xiii)  | $T = 2\pi \sqrt{\frac{l}{g}}$                                                               | $x = m\frac{\lambda}{2}$          |  |
|        | $[T] = [2][\pi] \sqrt{\frac{[L]}{[g]}}$                                                     | $[x] = [m] \frac{[\lambda]}{[2]}$ |  |
|        | since 2 and $\pi$ are dimensionless;                                                        | $[L] = [m] \frac{[L]}{[2]}$       |  |
|        | $[T] = \sqrt{\frac{[L]}{[LT^{-2}]}}$                                                        | since m and 2 are dimensionless;  |  |
|        | $[T] = \sqrt{\frac{1}{[T^{-2}]}}$                                                           | $\mathbf{L} = \mathbf{L}$         |  |
|        | $[T] = \sqrt{[T^2]}$                                                                        | L.H.S = R.H.S                     |  |
|        | T = T<br>L.H.S = R.H.S                                                                      |                                   |  |
|        | (02) marks                                                                                  | (02) marks                        |  |
| xiv)   | Newton's formula for speed of sound; v                                                      |                                   |  |
|        | Laplace correction; Newton assumed that propagation of sound waves is an                    |                                   |  |
|        | isothermal process. But according to Laplace when sound waves travel through                |                                   |  |
|        | air, there is compression and rarefaction in the particles of the medium. Where             |                                   |  |
|        | there is compression, the temperature rises. At rarefaction particles go apart and          |                                   |  |
|        | there is fall of temperature. Therefore, the temperature does not remain constant.          |                                   |  |
|        | As sound waves travel through air with a speed of 330 ms <sup>-1</sup> , the changes in air |                                   |  |
|        | pressure, volume and temperature is taken place so rapidly. The process is not              |                                   |  |
|        | isothermal but it is adiabatic process hence Boyle's law is not applicable. The total       |                                   |  |
|        | quantity of heat of the system as a whole remains constant.                                 |                                   |  |
|        |                                                                                             | (02) marks                        |  |
|        | Laplace corrected formula $v = \sqrt{\frac{\gamma P}{\rho}}$                                | (01) marks                        |  |
|        |                                                                                             |                                   |  |

(Prof.Tariq Salahuddin) 03332466651

(Prof. Asif Raza) 03002126733



### (Section C)

#### Marks 32

| Q.No. | Solution and Instructions                                                                                                        |                          |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|
| 3a.   | Bernoulli's principle                                                                                                            | (01) mark                |  |
|       | Assumptions                                                                                                                      | (01) mark                |  |
|       | Diagram                                                                                                                          | (01) mark                |  |
|       | Derivation                                                                                                                       | (05) marks               |  |
| 3b.   | Definition of electric dipole                                                                                                    | (01) mark                |  |
|       | Diagram clearly showing the direction of electric fields and their rects components                                              | ngular<br>(1.5) marks    |  |
|       | Derivation                                                                                                                       | (5.5) marks              |  |
| 4a.   | Addition of vectors by "Head to tail rule"     Diagram     Description     Addition of vectors by 'rectangular component method" | (01) marl<br>(01) marl   |  |
|       | Diagram Description                                                                                                              | (1.5) mark<br>(4.5) mark |  |
| 4b.   | Name the acceleration due to change in direction of linear velocity definition of centripetal acceleration                       | OR<br>(01) mark          |  |
|       | Diagrams; (both in terms of arc length and change in velocity vector Derivation                                                  | r) (01) mark             |  |
|       | In terms of linear velocity                                                                                                      | (05) marks               |  |
|       |                                                                                                                                  |                          |  |

(Prof. Tariq Salahuddin)
03332466651

03002126733

| Q.No. | Solution and Instruc                                                                                                                             | etions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5a.   | Definition of Simple Harmonic motion                                                                                                             | (01) mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | Reference diagram (01) mark                                                                                                                      | $ \begin{array}{c c} F_1 = 0 \\ \hline CONTROL $ |
|       | Derivation                                                                                                                                       | (06) marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5ъ.   | Definition of Doppler's effect                                                                                                                   | (01) mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | (i) listener moves towards stationary source:<br>Diagram                                                                                         | (0.5) marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       | Derivation; $f' = \left(\frac{v + v_0}{v}\right) f_s$                                                                                            | (03) marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | (ii) source moves towards stationary listener: Diagram                                                                                           | (0.5) marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       | Derivation $f' = \left(\frac{v}{v - v_s}\right) f_s$ $f_s$ ; is the frequency of the source; please consider if student use "f" instead of $f_s$ | (03) marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

(Prof. Tariq Salahuddin) 03332466651

(Prof.Asif Raza) 03002126733 (Signature of Head Examiner)