UNIT = 19 ELECTROMAGNETIC INDUCION

MULTIPLE CHOICE QUESTIONS (BOOK XII)

- 1. Electricity production by magnetism involves
 - (a) The conversion of chemical energy to electrical energy.
 - (b) The use of static electricity for power generation.
 - (c) The movement of conductors within magnetic fields.
 - (d) The absorption of solar energy by photovoltaic cells.
- 2. Induced e.m.f can be generated by relative movement, known as the generator effect, and by changing magnetic fields, known as the transformer effect.
 - (a) True in transformers only.
 - (b) False in all cases.
 - (c) Applicable to both cases.
 - (d) True only for static magnetic fields.
- 3. The magnitude of induced e.m.f. increases with
 - (a) The decrease in the speed of the conductor's motion.
 - (b) The decrease in the strength of the magnetic field.
 - (c) The increase in the number of turns in the coil.
 - (d) The reduction in the area of the coil.
- 4. Faraday's law of electromagnetic induction states
 - (a) That current in a circuit always opposes the change in magnetic flux.
 - (b) That the induced e.m.f. is directly proportional to the rate of change of magnetic flux.
 - (c) That a changing electric field produces a magnetic field.
 - (d) That magnetic fields can only be produced by electric currents.
- 5. Lenz's law predicts the direction of an induced current
 - (a) to conserve electric charge.
 - (b) by stating that the induced current will oppose the change causing it.
 - (c) by following the direction of the applied magnetic field.
 - (d) based on the magnitude of the electric field.

- 6. Eddy currents produce:
 - (a) static electricity in conductive materials.
 - (b) Alternating magnetic fields with no heating effects.
 - (c) magnetic fields that oppose the inducing field and cause heating in conductors.
 - (d) uniform electric fields that have no impact on power generation.
- 7. Laminated iron cores are used in electric motors and transformers to
 - (a) reduce the weight of the device.
 - (b) Enhance the mechanical strength.
 - (c) Minimize eddy current losses and reduce heating.
 - (d) Increase the magnetic permeability of the core.
- 8. Self-induction is the phenomenon where
 - (a) A changing electric field induces a magnetic field.
 - (b) A changing magnetic field within a coil induces an emf in the same coil.
 - (c) A constant magnetic field induces a constant emf.
 - (d) Two coils induce emf in each other through mutual induction.
- 9. An inductor stores electric potential energy in:
 - (a) The electric field around it.
 - (b) The magnetic field within its coil.
 - (c) The capacitance of its windings.
 - (d) The heat generated by its resistance.
- 10. Transformers work on the principle of
 - (a) converting direct current (DC) to alternating current (AC).
 - (b) electromagnetic induction between primary and secondary coils.
 - (c) generating electricity through chemical reactions.
 - (d) using permanent magnets to maintain a constant voltage.

UNIT = 19 ELECTROMAGNETIC INDUCION

EXAMS PRACTICE MULTIPLE CHOICE QUESTIONS

1	Transformer rating	s are given in				
	(a) KVa			(b) HP		
	(c) kVAR			(d) kW		
2	Which phenomenon primarily contributes to the core losses in a voltage transformer?					
	(a) Eddy currents			(b) Hysteresis		
	(c) Both A and B			(d) Neither A nor B		
3	A 100-turn coil of area $0.1~\text{m}^2$ rotates at half a revolution per second. It is placed in a uniform magnetic field of $0.01~\text{T}$ perpendicular to the axis of rotation of the coil. Calculate the maximum voltage generated in the coil.					
	(a) 256.33 V			(b) 89.12V		
	(c) 0.314 V			(d) 3.1455 V		
4	Identify the principle behind the working of an a.c. generator.					
	(a) Eddy currents		(b) Faraday's law			
	(c) Lenz's law			(d) Electromagnetic induction		
5	Which among the following is true about Faraday's law of Induction?					
	(a) An emf is induced in a conductor when it cuts the magnetic flux					
	(b) An emf is induced in a conductor when it moves parallel to the magnetic field					
	(c) An emf is induced in a conductor when it moves perpendicular to the magnetic field					
	(d) An emf is induced in a conductor when it is just entering a magnetic field					
6	Faraday's laws are the result of the conservation of which quantity?					
	(a) Momentum			(b) Energy		
	(c) Charge			(d) Magnetic field		
7	The magnetic flux in a closed circuit of resistance 20 Ω varies with time t as Φ = 4t ³ + 2t ² - 15t + 3. Calculate the magnitude of the induced emf at t = 1s.					
	(a) 3 V	(b) 1 V	(c) 5 V	(d) 6 V		
	Hint					
	$(\Phi = 4t^3 + 2t$	2 - 15 t + 3	taking deriva	tive on both side)		

$$\left\{ \frac{\Phi}{\Delta t} = 12t^2 + 4t - 15 \quad \Rightarrow \quad emf = 12(1)^2 + 4(1) - 15 \right\}$$

8	Which law is used to find the current direction in an a.c. generator?					
	(a) M	axwell's law	(b) L	enz's law		
	(c) C	orkscrew law	(d) A	mpere's circuital law		
9	Identify the law used to find the direction of eddy currents.					
	(a) L	enz's law	(b) N	/laxwell's law		
	(c) Aı	mpere's law	(d) F	araday's law		
10		umber of turns in a coil is increased from 10 to 100, its inductance becomes the original value.				
	(a)	10	(b)	100		
	(c)	$\frac{1}{10}$	(d)	25		
11	Mutual inductance of a system of two coils is 0.3 H. If the current in the one coil is changed from 10 A to 40 A in 0.01 sec, the average induced emf in the other coil is volt.					
	(a)	9	(b)	900		
	(c)	9000	(d)	90000		
12	Webe	er is the unit of:				
	(a) M	agnetic field intensity	(b) r	magnetic induction		
	(c) m	agnetic flux	(d) s	elf-inductance		
13	The p	practical application of the phenomenon of mutua	al indu	uctance is:		
	(a) <i>i</i>	AC generator	(b)	transformer		
	(c) r	rectifier	(d)	dynamo		
14	SI un	it of induction is:				
	(a)	Tesla	(b)	Henry		
	(c)	Watt	(d)	Weber		
15	1 Tes	sla is equal to:				

15 Tesia is equal to.

(a) $\frac{newton}{Coulomb \times metre}$ (b) $\frac{newton}{ampere \times metre}$

(c) $\frac{ampere}{newton \times metre}$ (d) $\frac{ampere \times metre}{newton}$

16 A transformer is used to change:

	(a) capacitance	(b) frequency			
	(c) voltage	(d) power			
17	In a step-down transformer; (a) Ns > Np (c) Ns = NP	(b) Ns < Np (d) Np = Ns			
18	In a step-down transformer; (a) N _S > N _P (c) N _S = NP	(b) $N_S < N_P$ (d) $N_P = N_S$			
19	Which rule determines the current direction ind magnetic field? (a) Ampere's Rule (c) Fleming's Right-Hand Rule	uced in a conductor moving through a (b) Fleming's Left-Hand Rule (d) Kirchhoff'			
20	The self-inductance of a coil is independent of: (a) Current (c) Induced voltage	(b) Time (d) Resistance of the coil			
21	The basic difference between an AC generator and a DC generator is that (a) An AC generator has an electromagnet, while a DC generator has a permanent magnet (b) An AC generator has slip rings while a DC generator has a commutator (c) DC generators will generate a higher voltage (d) An AC generator will generate a higher voltage				
22	The application of an electric motor is to (a) convert voltage into current (c) transfer electrical energy into mechanical	(b) transfer charge into current all energy (d) Convert current into voltage			
23	Which of the following devices work on the prin (a) Electric kettle (c) Electric lamp	ciple of electromagnetic induction? (b) Electric generator (d) Electric heater			
24	If the rotational velocity of a dynamo armature i (a) become half (c) remain unchanged	s doubled, then the induced emf will (b) become double (d) become four times			
25	Doubling the diameter of a loop of wire produce assuming all other factors remain constant? (a) The induced emf is 4 times as much. (a) The induced emf is half as much.	es what kind of change in the induced emf, (a) The induced emf is twice as much. (a) There is no change in the induced emf.			