UNIT = 17 SECOND LAW OF THERMODYNAMICS

MULTIPLE CHOICE QUESTIONS (BOOK XII)

- 1. A frictionless heat engine can be 100% efficient only if its exhaust temperature is:
 - (a) 0°C

(b) Equal to its input temperature

(c) 0 K

- (d) half of its input temperature
- 2. A refrigerator, with its door open. The temperature of the room will
 - (a) Rise
 - (b) Fall
 - (c) Remains the same
 - (d) Rise or fall depending on the area of the room
- 3. Which device is not used in a diesel engine
 - (a) Outlet Valve

(b) Piston

(c) Sparking Plug

- (d) Injector
- 4. Which one of the following processes is irreversible?
 - (a) Slow compression of an elastic spring
 - (b) Slow evaporation of a substance in an isolated vessel
 - (c) Slow compression of a gas
 - (d) A chemical explosion
- 5. According to 2nd law of thermodynamics, 100% conversion of heat into mechanical work is:
 - (a) Possible

(b) Possible, if the conditions are ideal

(c) Not possible

(d) Possible, if the process is adiabatic

6. The change in entropy is given by

(a)
$$\Delta S = \frac{\Delta Q}{T}$$

(b)
$$\Delta S = \Delta Q . T$$

(c)
$$\Delta S = \frac{\Delta U}{T}$$

(d)
$$\Delta S = \frac{\Delta W}{T}$$

- 7. The net change in entropy as a system in a natural process is
 - (a) Positive

(b) Negative

(c) Zero

- (d) infinity
- 8. The efficiency of diesel engines is
 - (a) Greater than petrol engine

(b) Less than petrol engine

(c) Equal to petrol engine

- (d) both have efficiency 1
- 9. The second law of thermodynamics states that:
 - (a) Energy can't be converted.
- (b) Entropy decreases over time.
- (c) Heat flows from cold to hot.
- (d) Entropy increases over time
- 10. The process violates the 2nd law of thermodynamics is:
 - (a) Refrigerator cooling.
 - (b) The heat engine working.
 - (c) Gases mixing.
 - (d) Heat flowing from cold to hot.

UNIT = 17 SECOND LAW OF THERMODYNAMICS

EXAMS PRACTICE MULTIPLE CHOICE QUESTIONS

1	Second law of thermodynamics defines		
	(a) Pressure	(b) Enthalpy	
	(c) Entropy	(d) Internal energy	
2	The refrigerator and heat pump work on which principle?		
	(a) First law of thermodynamics		
	(b) Second law of thermodynamics		
	(c) Third law of thermodynamics		
	(d) Zeroth law of thermodynamics		
3	Kelvin's plank statement shows the impossi	ble of which type of machines.	
	(a) Perpetual motion machine 1		
	(b) Perpetual Motion Machines 2		
	(c) Perpetual motion machine 3		
	(d) None of the above		
4	Which of the following has the minimum molecular mass,		
	(a) Oxygen	(b) Nitrogen	
	(c) Hydrogen	(d) methane	
5	The change in entropy is negative when:		
	(a) Heat is absorbed		
	(b) Heat is evolved		
	(c) internal energy increases		
	(d) the temperature of the system increases		
6	A refrigerator has a performance coefficient of 5. Calculate the ambient heat		
	discharged if the temperature inside the freezer is -20oC		
	(a) 11 °C	(b) 41 °C	
	(c) 21°C	(d) 31 °C	
7	A cyclic heat engine operates between a source temperature of 927 °C and a sink		
	temperature of 27 °C. What will be the max	·	
	(a) 100 %	(b) 60 %	
0	(c) 75 %	(d) 10 %	
8	The irreversibility in the system caused by f	-	
	(a) internal irreversibility	(b) external irreversibility	
0	(c) frictional irreversibility	(d) chemical irreversibility	
9	The area of a Carnot cycle represents		
	(a) useful work	(a) energy loss due to leakage	
10	(a) heat rejected	(a) heat absorbed	
10	The efficiency of a Carnot engine is given by:		
	(a) $\left(1 - \frac{T_1}{T_2}\right)$	$(b)\left(\frac{T_1}{T_2}-1\right)$	
	\ 12/	\12 /	
	$(c)\left(\frac{T_2}{T_1}-1\right)$	$(d)\left(1+\frac{T_1}{T_2}\right)$	

11	The efficiency of the Carnot engine operating with reservoir temperatures at $500~\mathrm{K}$ and $100~\mathrm{K}$ will be		
	(a) 20 %	(b) 30 %	
	(c) 60 %	(d) 80 %	
12	The efficiency of the Carnot cycle may be i	ncreased by	
	(a) increasing the highest temperature	•	
	(b) decreasing the highest temperature		
	(c) increasing the lowest temperature		
	(d) decreasing the lowest temperature		
13	The property of a working substance which increases or decreases as the heat is		
	supplied or removed reversibly is known as		
	(a) enthalpy	(b) internal energy	
	(c) entropy	(d) external energy	
14	A system that exchanges both mass and energy with its surroundings is called		
	(a) closed system	(b) open system	
	(c) isolated system	(d) equilibrium system	
15	5 The correct sequence of the processes taking place in a Carnot cycle is		
	(a) adiabatic- adiabatic- isothermal- isothermal		
	(b) adiabatic- isothermal- adiabatic_ isothermal		
	(c) isothermal-isothermal adiabatic -adiabatic		
	(d) isothermal -adiabatic isothermal-adiabatic.		
16	For irreversible process,		
	(a) $\Delta S = \frac{\Delta Q}{T}$ (c) $\Delta S < \frac{\Delta Q}{T}$	(b) $\Delta S > \frac{\Delta Q}{2}$	
	T	T T	
	(c) $\Delta S < \frac{c}{T}$	(b) $\Delta S > \frac{\Delta Q}{T}$ (d) $\Delta S = \frac{T}{\Delta Q}$	
17	For a reversible process,	(b) $\Delta S > \frac{\Delta Q}{T}$	
	(a) $\Delta S = \frac{\Delta Q}{T}$	(b) $\Delta S > \frac{\Delta Q}{\Delta S}$	
		1	
	(c) $\Delta S < \frac{\Delta Q}{T}$	(d) $\Delta S = \frac{T}{\Delta Q}$	
18	The enthalpy of a substance is defined as		
	(a) $\Delta H = \Delta U - P \Delta V$	$(\mathbf{b}) \Delta H = \Delta U + P \Delta V$	
	(c) $\Delta U = \Delta H + P \Delta V$	(d) $\Delta H = -\Delta U - P \Delta V$	
19	Otto cycle is perfectly		
	(a) Irreversible and reversible	(b) Reversible	
	(c) irreversible	(d) none of the above	
20	The practical efficiency of diesel engines is about		
	(a) 55 %	(b) 45 %	
	(c) 20%	(d) 10%	