MAGNETIC FIELDS

MULTIPLE CHOICE QUESTIONS (BOOK XII)

1.	If we reverse the direction of the electric current, then the direction of the magnetic field will be:			
	(a) Same	(b) Reversed		
	(c) tangent	(d) normal		
2.	The application of the magnetic field is:			
	(a) microwave oven	(b) Magnetic levitation trains		
	(c) electrolysis	(d) plant photosynthesis		
3.	The equation F=BIL can only be used if the magnetic field, length of conductor, and electric			
	current are:			
	(a) At right angles to each other	(c) Anti-parallel to each other		
	(b) in the same direction	(d) anti-perpendicular to each other		
4.	If the charge on a particle is doubled, and its velocity remains the same, how then the magnetic force on the particle will be:			
	(a) doubled	(b) halved		
	(c) Is the same.	(d) quadrupled		
5.	The strength of the magnetic field of the solenoid can be increased by:			
	(a) Increasing number of turns			
	(b) Decrease the number of turns			
	(c) increasing the current through the solenoid			
	(d) inserting a ferromagnetic core (e.g., iron) into the solenoid			
6.	The magnetic field inside a solenoid is:			
	(a) equal to zero			
	(b) uniform			
	(c) decreases as we go away from the center to the surface			
	(d) increases as we go towards the surface			
7.	The force between two current-carrying conductors arises due to			
	(a) Magnetic effect of current	(b) Polarization		
	(c) Electromagnetic induction	(d) Electrostatic interaction		

UNIT 18

MAGNETIC FIELDS

8.	measure a higher voltage, what should you do with the voltmeter's internal resistance?			
	(a) Increase it	(b) Decrease it		
	(c) Keep it the same	(d) It doesn't affect the measurement		
9.	A proton moves perpendicular to a uniform ma	gnetic field. What is the direction of the force		
	experienced by the proton?			
	(a) Parallel to the magnetic field	(b) In the direction of the proton's velocity		
	(c) Perpendicular to the magnetic field and	the proton's velocity		
	(d) Opposite to the direction of the proton's velocity			
10.	An electron moves parallel to a uniform magnetic field. What is the magnitude of the for			
	experienced by the electron?			
	(a) Maximum, since the electron is moving in the same direction as the field			
	b) Minimum, since the electron is moving perpendicular to the field			
	(c) Zero, since the electron is moving parall	el to the field		
	(d) It depends on the speed of the electron			
	EXAMS PRACTICE MULTIPLE	E CHOICE QUESTIONS		
	EXAMS PRACTICE MULTIPLE	E CHOICE QUESTIONS		
1	When a charged particle moves in a magnetic			
1	When a charged particle moves in a magnetic (a) remains constant	field its kinetic energy (b) can increase		
1	When a charged particle moves in a magnetic (a) remains constant (c) can decrease An electron moving with a velocity of 15 ms-1 electron.	field its kinetic energy (b) can increase (d) can increase or decrease enters a uniform magnetic field of 0.2 T,		
	When a charged particle moves in a magnetic (a) remains constant (c) can decrease	field its kinetic energy (b) can increase (d) can increase or decrease enters a uniform magnetic field of 0.2 T,		
2	When a charged particle moves in a magnetic (a) remains constant (c) can decrease An electron moving with a velocity of 15 ms-1 e along a direction parallel to the field. What would (a) Elliptical (c) Helical	field its kinetic energy (b) can increase (d) can increase or decrease enters a uniform magnetic field of 0.2 T, ald be its trajectory in this field? (b) Straight path (d) Circular		
	When a charged particle moves in a magnetic (a) remains constant (c) can decrease An electron moving with a velocity of 15 ms-1 e along a direction parallel to the field. What wou (a) Elliptical (c) Helical Which of the following will experience a maxim velocity perpendicular to the magnetic field: (i)	field its kinetic energy (b) can increase (d) can increase or decrease enters a uniform magnetic field of 0.2 T, ald be its trajectory in this field? (b) Straight path (d) Circular um force, when projected with the same α-particle, and (ii) β-particle?		
2	When a charged particle moves in a magnetic (a) remains constant (c) can decrease An electron moving with a velocity of 15 ms-1 ealong a direction parallel to the field. What wou (a) Elliptical (c) Helical Which of the following will experience a maxim velocity perpendicular to the magnetic field: (i) (a) Both α-particle and β-particle	field its kinetic energy (b) can increase (d) can increase or decrease enters a uniform magnetic field of 0.2 T, ald be its trajectory in this field? (b) Straight path (d) Circular um force, when projected with the same α-particle, and (ii) β-particle? (b) zero force		
2	When a charged particle moves in a magnetic (a) remains constant (c) can decrease An electron moving with a velocity of 15 ms-1 e along a direction parallel to the field. What wou (a) Elliptical (c) Helical Which of the following will experience a maxim velocity perpendicular to the magnetic field: (i) (a) Both α-particle and β-particle (c) β-particle A proton enters a magnetic field of flux density	field its kinetic energy (b) can increase (d) can increase or decrease enters a uniform magnetic field of 0.2 T, ald be its trajectory in this field? (b) Straight path (d) Circular um force, when projected with the same α-particle, and (ii) β-particle? (b) zero force (d) α-particle 5 T with a velocity of 5 × 10 ⁷ ms ⁻¹ at an		
2	When a charged particle moves in a magnetic (a) remains constant (c) can decrease An electron moving with a velocity of 15 ms-1 e along a direction parallel to the field. What wou (a) Elliptical (c) Helical Which of the following will experience a maxim velocity perpendicular to the magnetic field: (i) (a) Both α -particle and β -particle (c) β -particle	field its kinetic energy (b) can increase (d) can increase or decrease enters a uniform magnetic field of 0.2 T, ald be its trajectory in this field? (b) Straight path (d) Circular um force, when projected with the same α-particle, and (ii) β-particle? (b) zero force (d) α-particle 5 T with a velocity of 5 × 10 ⁷ ms ⁻¹ at an		
2 3 4	When a charged particle moves in a magnetic (a) remains constant (c) can decrease An electron moving with a velocity of 15 ms-1 e along a direction parallel to the field. What wou (a) Elliptical (c) Helical Which of the following will experience a maxim velocity perpendicular to the magnetic field: (i) (a) Both α -particle and β -particle (c) β -particle A proton enters a magnetic field of flux density angle of 90^{0} with the field. Find the force on the (a) 0.2×10^{-11} N (c) 4×10^{-11} N	field its kinetic energy (b) can increase (d) can increase or decrease enters a uniform magnetic field of 0.2 T, ald be its trajectory in this field? (b) Straight path (d) Circular um force, when projected with the same α-particle, and (ii) β-particle? (b) zero force (d) α-particle 5 T with a velocity of 5 × 10 ⁷ ms ⁻¹ at an eproton. (b) 2 × 10 ⁻¹¹ N (d) 200 × 10 ⁻¹¹ N		
2	When a charged particle moves in a magnetic (a) remains constant (c) can decrease An electron moving with a velocity of 15 ms-1 e along a direction parallel to the field. What wou (a) Elliptical (c) Helical Which of the following will experience a maxim velocity perpendicular to the magnetic field: (i) (a) Both α -particle and β -particle (c) β -particle A proton enters a magnetic field of flux density angle of 90° with the field. Find the force on the (a) 0.2×10^{-11} N	field its kinetic energy (b) can increase (d) can increase or decrease enters a uniform magnetic field of 0.2 T, ald be its trajectory in this field? (b) Straight path (d) Circular um force, when projected with the same α-particle, and (ii) β-particle? (b) zero force (d) α-particle 5 T with a velocity of 5 × 10 ⁷ ms ⁻¹ at an exproton. (b) 2 × 10 ⁻¹¹ N (d) 200 × 10 ⁻¹¹ N d with velocity perpendicular to the direction		
2 3 4	When a charged particle moves in a magnetic (a) remains constant (c) can decrease An electron moving with a velocity of 15 ms-1 ealong a direction parallel to the field. What wou (a) Elliptical (c) Helical Which of the following will experience a maxim velocity perpendicular to the magnetic field: (i) (a) Both α -particle and β -particle (c) β -particle A proton enters a magnetic field of flux density angle of 90° with the field. Find the force on the (a) 0.2×10^{-11} N (c) 4×10^{-11} N	field its kinetic energy (b) can increase (d) can increase or decrease enters a uniform magnetic field of 0.2 T, ald be its trajectory in this field? (b) Straight path (d) Circular um force, when projected with the same α-particle, and (ii) β-particle? (b) zero force (d) α-particle 5 T with a velocity of 5 × 10 ⁷ ms ⁻¹ at an exproton. (b) 2 × 10 ⁻¹¹ N (d) 200 × 10 ⁻¹¹ N d with velocity perpendicular to the direction yed path. What will happen to the radius of		

UNIT 18 MAGNETIC FIELDS

_	M/high of the following postiolog will not owner:					
6	Which of the following particles will not experi	ence a	any magnetic force in a magnetic field			
	(a) A proton moving in a magnetic field					
	(b) An electron moving in a magnetic field					
	(c) An alpha particle moving in a magnetic fiel	ld				
	(d) A neutron moving in a magnetic field					
7	The charged particle enters the uniform magn	etic fi	eld in such a way that its initial velocity			
	is not perpendicular to the field the orbit will be		?			
	(a) a circle	(b) a	a spiral			
	(c) an ellipse	` '	helix			
8	A Current carrying wire is placed in a magneti					
Ü						
	perpendicular to the plane of the conductor. What will happen to the force applied to the conductor if the current in the wire is doubled?					
	(a) Doubled		Halved			
		` '				
0	(c) Become three times	` ,	Remains same			
9	The strength of the magnetic field around a current-carrying wire.					
	(a) increases as the distance from the wire increases.					
	(b) is greater near the wire.					
	(c) is independent of distance from the wire					
	(d) is independent of the current in a wire					
10	The magnitude of the force acting on a current-carrying conductor placed in the magnetic					
	field is independent of					
	(a) flux density	(b)	length of conductor			
	(c) cross-sectional area of conductor	(d)	current flowing through the conductor			
11	A 200 mm long conductor carries a current of	` '				
	magnetic field having a flux density of 0.9 T. The force on the conductor will be					
	(a) 36 N		1.8 N			
	(c) 3.6 N	(d)	18 N			
12		` '				
12	A conductor of length L has current I passing through it, when it is placed parallel to a magnetic field of density B. The force experienced by the conductor will be					
	(a) Zero	(b)	BIL			
4.0	(c) BILsinθ	(d)	2BI L			
13	Tesla is a unit of					
	(a) Field strength	(b)	Inductance			
	(c) Flux density	(d)	Flux			
14	Which of the following is a vector quantity?					
	(a) Relative permeability	(b)	Magnetic field intensity			
	(c) electric potential	(d)	Magnetic potential			
15	Which of the following is not a unit of flux?	, ,				
	(a) Maxwell	(b)	Telsa			
	(c) Weber	(d)	All of the above			
16	One telsa is equal to	(/				
10	(a) 1 Wb/mm ²	(b)	1 Wb/m			
	(c) 1 Wb/m²	(d)	1 mWb/m ²			
17	One maxwell is equal to	(u)	1 111000/111			
17	· · · · · · · · · · · · · · · · · · ·	(h)	10108 Wh			
	(a) 10×10 ⁻⁸ Wb	(b)	10×10 ⁸ Wb			
40	(c) 1 Wb	(d)	10 Wb			
18	The commonly used material for shielding or screening magnetism is					
	(a) Copper	(b)	Aluminum			
	(c) Soft iron	(d)	Brass			

UNIT 18

MAGNETIC FIELDS

19	Which type of physical quantity is magnetic	c flux?		
	(a) Scalar	(b) Vector		
	(c) Isotropic	(d) Isentropic		
20	· / •	a perpendicular distance 'R' from a long straight		
	wire carrying a current of 12 A is 3×10^{-5} Wb/m ² . The value of 'R' is:			
	, 3	$[\mu_0 = 4\pi \times 10^{-7} \text{ Wb/A m}]$		
	(a) 0.08mm	(d) 0.8mm		
	(c) 8mm	(d) 80mm		
21	` '	from a long wire carrying current I is 0.4 tesla.		
21	The magnetic field intensity at a distance			
	(a) 0.2 tesla	(b) 0.8 tesla		
	(c) 0.1 tesla	(d) 1.6 tesla		
22	The ampere circuital law is used to find	(4) 110 100.4		
	(a) Magnetic field	(b) Electric field		
	(c) Force	(d) Velocity		
23		raight current-carrying copper wire of magnitude 1		
	_	$u_0 = 4\pi \times 10^{-7} \text{ Wb/A-m}$		
	(a) 2×10 ⁻⁷ Wb	(b) 1×10 ⁻⁶ Wb		
	(c) 2×10-6 Wb	(d) 1×10 ⁻⁷ Wb		
24		to a toroid of turns 50, current 2A, and radius		
4	159mm.	o a toroid of tarns oo, barrent 27t, and radius		
	(a) 50	(b) 75		
	(c) 100	(d) 200		
25	1 gauss is equal to	(d) 200		
_0	(a) 10 ⁴ T	(b) 10 ⁻⁴ T		
	(c) 10 ³ T	(d) 10 ⁻³ T		
26	The charge-to-mass ratio of an electron is	` '		
	(a) 5.69×10^{-12} C/kg	(b) 1.76 × 10 ¹¹ C/kg		
	(c) 1.76×10^{-11} C/kg	(d) 5.69×10^{12} C/kg		
27	A moving coil galvanometer is converted in	` ,		
	(a) low resistance in series	(b) high resistance in series		
	(c) high resistance in parallel	(d) low resistance in parallel		
28	A galvanometer can be converted into a vo			
20	(a) Low resistance in series	(b) High resistance in series		
	(c) Low resistance in parallel	(d) High resistance in parallel		
29	Magnetic field inside a solenoid is	(1) 3		
	(a) zero	(b) weak		
	(c) uniform	(d) non-uniform		
30		the current flowing through the solenoid is 5 A,		
	the magnetic field inside the solenoid will be			
	(c) 2.3×10^2	(c) 1.3×10^2		
	(c) 1.1 × 10 ²	(c) 1.4×10^2		