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MAGNETISM 

Magnets have been known to humans for over two to three thousand years. Magnets 

attract some other substances and are generally made up of iron. Nickel also shows magnetic 

behavior sometimes. Alloys of Fe-Ni and a few different elements added to them show 

magnetism. 

 

PROPERTIES OF MAGNETS 
If you bring iron filings or iron nails close to a magnet, the 

filings or nails will get attracted to the magnetic poles. The 

centre of the magnet does not attract the filings or the nails. 

 

 

If you break up a magnet, new north and south poles will form immediately. A magnetic 

pole cannot be isolated. 

 
If you spread iron filings around a magnet, they will align along the lines in a curved fashion, 

starting from one pole and ending on the next. These lines are called lines of force of the 

magnet. 

 
 

THE MAGNETIC FIELD 

We begin our study of magnetism with a few general observations regarding magnets 

and the fields they produce. These observations apply over a wide range of scales—from the 

behavior of small, handheld bar magnets to the global effects associated with the Earth's 

magnetic field. 
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INTRODUCTION: 

A magnetic field is a fundamental concept in physics that describes the region around 

a magnet or a current-carrying conductor where magnetic forces are exerted on other 

magnets, conductors, or charged particles. 

Permanent magnets, such as iron magnets, have their intrinsic magnetic fields due to the  

alignment of their magnetic domains. 

Magnetic fields have numerous practical applications, including: 

Electric motors 

Transformers 

MRI machines (Magnetic Resonance Imaging) 

Magnetic levitation trains 

Magnetic compasses 

Magnetic data storage (hard disk drives) 

 

 MAGNETIC FIELDS: 

The magnetic field can be defined as "An area around a permanent magnet or a 

current-carrying conductor, where they generate a magnetic force." Unlike in electrostatics, 

where electric charges create an electric field and exert electric forces on other charges, the 

magnetic field lacks a direct counterpart due to the absence of magnetic monopoles.  

The magnetic field can be generated through two primary methods: 

From permanent magnets. 

From current carrying conductors, also known as electromagnets 

 
 



 

 

 

PROF: IMRAN HASHMI 3 

 

UNIT -18 MAGNETIC FIELDS 
In 1819, Hans Christian Oersted made a significant discovery that revealed how a current 

The carrying conductor generates a magnetic field. 

When current is passed through a straight current-carrying conductor, a magnetic field 

is produced around it, the field lines are concentric circles at every point of the current-carrying 

conductor. The direction of the magnetic field about the direction of electric current through a 

straight conductor can be depicted by using the Right-Hand Thumb Rule, also called the 

Maxwell Corkscrew Rule. 

MAGNETIC FORCE ON CURRENT-CARRYING CONDUCTOR 

When we place a current-carrying conductor within a uniform external magnetic field, the 

interaction between the magnetic field produced by the conductor and the external magnetic 

field gives rise to external force, denoted as F, acting on the conductor, as illustrated in the 

figure.  

 
Factors on which the force acting on current carrying conductor in a magnetic field: 

The force acting on a current-carrying conductor depends on several factors, such as, 

length, current, and the strength of the external magnetic field 

The force (F)  is directly proportional to the length of the conductor (L) that lies within the  

magnetic field 

F   α   L    …… . . (i) 
The force is also directly proportional to the current (I) passing through the conductor. 

F   α   I    …… . . (ii) 
 



 

 

 

PROF: IMRAN HASHMI 4 

 

UNIT -18 MAGNETIC FIELDS 
Similarly, the force is directly proportional to the strength of the external magnetic field (B). 

F   α   B    …… . . (iii) 
 

Combining these factors, we will obtain the following relationship: 

                                                       F   α  B I L     
                                               F  = ( k)  B I L     
Here, 'k' is the proportionality constant, and its value equals 1 in the SI unit system. 

                                               F  =  B I L     
We can write this expression in a more convenient vector form 
                                              F⃗   =  I( L⃗   ×  B ⃗⃗  ⃗ ) 

where  L⃗   is a vector that points in the direction of the current I and has a magnitude 

equal to the length L of the segment. 

The magnitude of this force is given by  

                                          F  =  B I L sin 𝜃     
Where ‘’ is the angle between vector length( L⃗  )  and magnetic field ( B ⃗⃗  ⃗ ) 
SPECIAL CASES 

ZERO FORCE: 

If the current-carrying conductor is parallel to the field, the force is zero 

When θ = 0o or 180o 

F  =  B I L sin 𝜃 

θ=00 

F  =  B I L sin 0 

F  =  B I L (0) 

F  =  0 
A conductor will experience no force when 

its current is parallel to B.⃗⃗⃗   

 

F  =  B I L sin 𝜃 

θ= 1800 

F  =  B I L sin 180 

F  =  B I L (0) 

F  =  0 
A conductor will experience no force when 

the current is anti-parallel to B.⃗⃗⃗   

 
 

MAXIMUM FORCE: 

The current carrying wire has been positioned at 900 to the magnetic field. The maximum force 

acting on the wire due to the magnetic field 

F  =  B I L sin 𝜃 

θ=900 

F  =  B I L sin 90 
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F  =  B I L (1) 

F  =  B I L 

 
MAGNETIC FLUX: 

Definition 1 

Magnetic flux is the number of magnetic lines passing through an area held 

perpendicular to it.  

Definition 2 

Magnetic flux is the dot product between the magnetic field and vector area.  

 

Mathematically 

𝚽 =  𝐁⃗⃗  . 𝐀⃗⃗  
     𝚽 =  𝑩 𝑨 𝐜𝐨𝐬𝜽 

 

where  

B is the magnitude of the magnetic field (having the unit of Tesla, T, or web/m2 ),  

A is the surface area through which magnetic field lines project in meters squared (m2) 

θ is the angle between the magnetic field lines and the standard (perpendicular) to area A 

Maximum Magnetic Flux: 

The magnetic flux will be maximum when the angle between magnetic field B and 

area vector A is zero, i.e., =0°, and the surface is 

perpendicular to the magnetic lines.  

𝚽 =  𝑩 𝑨 𝐜𝐨𝐬𝜽 

𝚽 =  𝑩 𝑨 𝐜𝐨𝐬𝟎𝟎 

𝚽 =  𝑩 𝑨 (𝟏) 
    𝚽𝒎𝒂𝒙  =  𝑩 𝑨  

 

This case is shown in the figure.  

 

Minimum Magnetic Flux: 

When the angle between the area vector and magnetic field is 90°, then lines of force do not  
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pass through the surface, and magnetic flux will be 

minimum  

𝚽 =  𝑩 𝑨 𝐜𝐨𝐬𝜽 

𝚽 =  𝑩 𝑨 𝐜𝐨𝐬𝟗𝟎𝟎 

𝚽 =  𝑩 𝑨 (𝟎) 
     𝚽𝒎𝒊𝒏  =  𝟎  

 

Unit of Magnetic Flux: 

The SI unit of magnetic flux is Weber (Wb). 

1 𝑊𝑒𝑏 = 1 
𝑁 𝑚

𝐴
 

MAGNETIC FLUX DENSITY: 

Magnetic flux density can be defined as: 

The magnetic flux density at a specific point in space is the force experienced per unit length 

along a straight conductor carrying unit current placed perpendicular to the field at that  

particular location. 

𝐁 =  
 𝐅

𝐈 𝐋
 

Unit of Magnetic Flux Density: 

The SI unit of magnetic flux density is Tesla (T), named after the Serbian-American inventor 

Nikola Tesla. 

𝟏𝑻 = 
𝑵

𝑨  𝒎
 

ONE TESLA:  

 

One Tesla is defined as follows: If a conductor having a length of 1 m and carrying a current 

of    1 A placed perpendicularly to the magnetic field experiences a force of one Newton, 

then the magnetic flux density will be 1 Tesla. 

 

THE BIOT – SAVART LAW 

This law is a mathematical relation between magnetic induction ‘B’ at a point due to a 

current-carrying conductor and current 'I.'  

 

MATHEMATICAL EXPRESSION: 
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Magnetic induction ‘B’ at a point due to a straight current-carrying conductor is 

directly proportional to twice the current value through the conductor and inversely 

proportional to the distance from the conductor.  

 

  𝐵 𝛼 
2𝐼

𝑟
  

  𝐵 = (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 
2𝐼

𝑟
 

𝐵 =
𝜇0

4 𝜋
 ×

2𝐼

𝑟
 

𝐵 =
𝜇0  𝐼

2 𝜋 𝑟
  

 

Where 𝜇0   is called the permeability of free space. 

Its value is 4𝜋 × 10−7 𝑇.𝑚/𝐴 

CONCLUSION: 

1. It is clear from the above equation that the magnitude of ‘B’ at any point on the circle 

of radius ‘r’ is constant if a current-carrying conductor is placed at its center.  

2. The direction at any point on the circle is along the tangent. Such a field is usually 

known as a tangential magnetic field. 

 

AMPERE’S LAW 

This law is the relation between the tangential component of the magnetic field of 

induction at a point on a closed curve and the net current ‘I’ through the area bounded 

by the curve.  
STATEMENTS 

The law states that the sum of the products of the tangential component of the magnetic 

field of induction and the length element of a closed curve taken in the magnetic field is o 

times the current, which passes through the area, bounded by this curve. 

  
MATHEMATICAL EXPRESSION: 

  

nN
L.B 














→→

 = o (current enclosed) 

Where o is called the permeability of free space, its value is 4 × 10-7 T.m/A.  
PROOF: 

Consider a long straight conductor carrying a current 'I.' The magnetic lines of 

induction will be concentric circles, and the magnetic field will be along the tangent at 

any point. Draw a circle of radius 'r' with its center at the conductor. The magnitude of 

B at any point on the circle is given by the Biot-Savant law. 
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       𝑩 =  
𝝁𝒐𝑰

𝟐𝝅𝒓
  

Suppose break the whole circle path into small elements each of length Ɩ ( i.e.,  Ɩ1    

Ɩ2 ………., Ɩn). Multiply each element by the tangential component of the magnetic 

field (BCos). B will be parallel to small element ∆Ɩ,  then applying Ampere’s law  

(𝐵⃗ . ∆Ɩ1⃗⃗ ⃗⃗  ⃗)  + ( 𝐵⃗ . ∆Ɩ2⃗⃗⃗⃗⃗⃗ )  +  ( 𝐵⃗ . ∆Ɩ3⃗⃗⃗⃗⃗⃗ ) + ⋯…………+ ( 𝐵⃗  .  ∆Ɩ𝑛⃗⃗ ⃗⃗ ⃗⃗ )  =  𝜇0𝐼  

 ∑(𝐵⃗ ∙  ∆Ɩ⃗⃗  ⃗)
𝑖

𝑛

𝑖=1

  =  𝜇0𝐼 

 ∑  (𝐵⃗ ∙  ∆Ɩ⃗⃗  ⃗)
𝑖
 

𝑛

𝑖=1

  =  𝜇0(current enclosed) 

APPLICATIONS OF AMPERES’S LAW 

SOLENOID 

A long-insulated wire wound in a close-packed helix carrying a current is called a 

solenoid. 

SOLENOIDAL FIELD: 

 A long coil of wire with many loops or turns, Each loop produces a magnetic field as 

was shown in Fig, and the total field inside the solenoid will be the sum of the fields due to 

each current loop as shown in Fig, for a few loops. If the solenoid has many loops and they 

are close together, the field inside will be nearly uniform and parallel to the solenoid axis 

except at the ends, as shown in Fig. Outside the solenoid, the field lines spread out in space, 

so the magnetic field is much weaker than inside. 

 
 

Consider an Amperian loop ABCD with side AB along the axis to calculate' B' inside the 

solenoid. Now calculate the products of 𝐵⃗  and elements Ɩ1  ,   Ɩ2 ,   Ɩ3 , 𝑎𝑛𝑑  Ɩ4. 
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(i) 𝐵⃗ . Ɩ1⃗⃗    =   𝐵 Ɩ1 cos 𝜃               𝐵 𝑖𝑠 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑡𝑜  Ɩ1,   𝑡ℎ𝑒𝑛 𝜃 =  0 0      

𝐵⃗ . Ɩ1⃗⃗    =   𝐵 Ɩ1 cos 00                 

𝐵⃗ . Ɩ1⃗⃗    =   𝐵 Ɩ1 

(ii) 𝐵⃗ . ℓ2
⃗⃗⃗⃗   =   𝐵 ℓ2 cos 𝜃               𝐵 𝑖𝑠 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟  𝑡𝑜  ℓ2,   𝑡ℎ𝑒𝑛 𝜃 =  90 0      

𝐵⃗ . ℓ2
⃗⃗⃗⃗   =   𝐵 ℓ2 cos 900     =  𝐵 ℓ1(0)         

𝐵⃗ . ℓ2
⃗⃗⃗⃗   =   0 

(iii) 𝐵⃗ . ℓ3
⃗⃗⃗⃗   =   𝐵 ℓ3 cos 𝜃               𝐵 𝑖𝑠 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟  𝑡𝑜  Ɩ3,   𝑡ℎ𝑒𝑛 𝜃 =  90 0      

𝐵⃗ . ℓ3
⃗⃗⃗⃗   =   𝐵 ℓ3 cos 900     =  𝐵 ℓ3(0)         

𝐵⃗ . ℓ3
⃗⃗⃗⃗   =   0 

(iv)  The field outside the solenoid is negligible compared to inside. 

𝐵⃗ . ℓ4
⃗⃗⃗⃗   =   0 

 Adding all these products, we get 

𝐵⃗ . ℓ1
⃗⃗  ⃗ + 𝐵⃗ . ℓ2

⃗⃗⃗⃗ + 𝐵⃗ . ℓ3
⃗⃗⃗⃗ + 𝐵⃗ . ℓ4

⃗⃗⃗⃗  =   𝐵 ℓ1  + 0 + 0 + 0 

∑(𝐵⃗ . ℓ⃗ )
𝑖

4

𝑖=1

=   𝐵 ℓ    ………… . (𝑖) 

 Let 

  n = 
𝑁

ℓ
  (no. of turns per unit length) 

  I = current in each turn,  

 Then  n ℓ I = current enclosed by Amperian loop   

 From Ampere’s Law: 

∑(𝐵⃗ . ℓ⃗ )
𝑖

4

𝑖=1

=  𝜇 0 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 𝑏𝑦 𝑎𝑚𝑝𝑒𝑟𝑖𝑎𝑛 𝑙𝑜𝑜𝑝)   

 Substituting the value of current enclosed = n Ɩ I in the above equation, we get  
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∑(𝐵⃗ . ℓ⃗ )
𝑖

4

𝑖=1

=  𝜇 0 (n ℓ I )………… . . (𝑖𝑖)  

Comparing equations (i) and (ii), we get 

 𝐵 ℓ =    𝜇 0 (n ℓ I ) 

𝑩 =    𝝁 𝟎 𝒏 𝑰 

This is the magnetic field magnitude inside a solenoid. B depends only on the number of 

loops per unit length and the current I. 
Note    

 
 

 

 

TOROID 

 

A Solenoid bent into the doughnut shape is called a toroid OR. A toroid is a coil of 

insulated copper wire wound on a circular core.   

 

TOROID FIELD:  

When a current is passed through a toroid field, it is strong, and lines of induction are 

concentric circles. The outside toroid field is negligible. To calculate ‘B’ inside the toroid, 

consider the Amperian loop in the form of a circle of radius ‘r’ concentric with the toroid. 

Divide the loop into small elements ∆ℓ and calculate the product of 𝐵⃗  and ∆Ɩ⃗⃗  ⃗  for each 

element. 

  

𝐵⃗ .  ∆ℓ⃗⃗⃗⃗ = 𝐵 ∆ℓ cos 00   

𝐵⃗ .  ∆ℓ⃗⃗⃗⃗ = 𝐵 ∆ℓ  
 The sum of all these products will be  

    

Anticlockwise current  
 produces North pole 
 

clockwise current  
 produces South pole 
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∑(𝐵⃗⃗ .  ∆ℓ⃗⃗⃗⃗  ⃗)
𝑖

𝑛

𝑖=1

 = 𝐵 ∑(∆ℓ)𝑖

𝑛

𝑖=1

  

∑(𝐵⃗⃗ .  ∆ℓ⃗⃗⃗⃗  ⃗)
𝑖

𝑛

𝑖=1

 = 𝐵 (2 𝜋 𝑟)……… (𝑖) 

  

For Ampere’s law 

  

∑(𝐵⃗⃗ .  ∆Ɩ⃗⃗⃗⃗ )
𝑖

𝑛

𝑖=1

 = 𝜇0 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑) 

∑(𝐵⃗⃗ .  ∆Ɩ⃗⃗⃗⃗ )
𝑖

𝑛

𝑖=1

 = 𝜇0 (𝑁𝐼)……………(𝑖𝑖) 

Comparing equations (i) and (ii), we get 

 𝐵 (2 𝜋 𝑟)  =    𝜇 0 (N I ) 

𝐵  =   
 𝜇 0 (N I )

(2 𝜋 𝑟)
 

𝐵  =   
 𝜇 0 N I

2 𝜋 𝑟
 

This is known as the toroid magnetic field formula. 

The result shows that the B varies as  
1

𝑟
 and, hence, is non-uniform in the region occupied by 

the toroid. However, if it is very large compared with the cross-sectional radius of the toroid, 

then the field is approximately uniform inside the toroid.  

SPECIAL CASES 

CASE - 1 

If the Amerian circular loop is not within the toroid but on the 

inner side of the toroid, then it encloses no current (I = 0 ). 

According to the Ampere’s law: 

𝐵  =   
 𝜇 0 N (0)

2 𝜋 𝑟
 

𝐵  =   0 

CASE – 2 
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Suppose the amperian circular loop is outside the toroid. In that case, this circular path 

encloses N turns, carrying a current in one direction and the same amount of current in the 

opposite direction. Hence, the net current bounded by this 

circular path is zero 

According to the Ampere’s law:  

 

 

𝐵  =   
 𝜇 0 N (0)

2 𝜋 𝑟
 

𝐵  =   0 

 

FORCE ON A CHARGED PARTICLE IN A UNIFORM MAGNETIC FIELD 

It is found experimentally that a moving charge particle experiences a force in a 

magnitude field. This force is directly proportional to  

1. The magnitude of charge “q” 

2. The magnitude of velocity “v”  

3. The magnetic induction “B” 

4.          The “sine” of “” between  𝑣
→

 and 𝐵
→

 

 F  q V B sin  
In SI system the unit of “B” is so adopted that the proportionality constant in above  

equation becomes one. Because 𝐹
→

, 𝑉
→

 and 𝐵
→

 are vectors, the force can be written as a 

vector product.  

    𝑭⃗⃗ = 𝒒(𝒗⃗⃗ × 𝑩⃗⃗ ) 

DIRECTION OF FORCE 

You can determine the direction of the (𝒗⃗⃗ × 𝑩⃗⃗ )vector by using the right-hand rule as 

for any cross product ( for q is positive ): orient;your right hand so that your outstretched 

fingers point along the direction of the motion of the particle (v), and when bend your 

fingers they point along the direction of B. then your thumb will point in the direction 

of the force. This is true only for positively charged particles; for negatively charged 

particles, the force is exactly in the opposite direction. 
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CHARACTERISTICS 

1. A charge experiences zero force if the particle moves parallel or anti-parallel to the 

field lines ( = 0o or 180o).  

2. Magnetic force cannot change the magnitude of velocity  𝒗
→

 

3. Work done by magnetic force on charge particle q is always zero.  

4. Magnetic force cannot change the kinetic energy of q.  

UNIT OF ‘B’ 

 Consider,          F = q V B Sin 

         
F

B =
qV sinθ

 

    Unit of B =
𝑵𝒆𝒘𝒕𝒐𝒏

𝒄𝒐𝒖𝒍𝒐𝒎𝒃  (
𝒎𝒆𝒕𝒆𝒓 

 𝒔𝒆𝒄𝒐𝒏𝒅
)
  

   Unit of B = 
meter . second / coul

Newton
     

   Unit of B = 
 meter . ampere 

Newton
         

   Unit of B = tesla (T).  

A unit magnetic field of induction of 1 Tesla is said to exist at a point where the force 

experienced by a unit positive charge moving with 1 m /s perpendicular to the magnetic 

field is 1N. 

 

CHARGE TO MASS RATIO OF ELECTRON: 

 

Measuring an electron's charge-to-mass ratio (e/m) is a classic experiment in 

electromagnetism and particle physics, known as the "e/m experiment." 
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APPARATUS AND MATERIALS: 

1. Cathode Ray Tube (CRT): This vacuum tube produces a beam of electrons. It consists of 

an electron gun, focus in, deflection plates, and a fluorescent screen, as shown in the figure  

2. Magnetic Field Source: We'll need a strong and uniform magnetic field source, such as 

a Helmholtz coil or a solenoid. 

3. Voltage Source: A variable voltage source to create an electric field. 

4. Fluorescent  Screen:  A  screen coated  with  a  phosphorescent material to visualize the  

electron beam. 

5. Rulers and Measurement Devices: To measure the radius of the electron beam's circular 

path and the electric Potential applied. 

 
PROCEDURE: 

1. Electrons are produced by heating the filament and focused toward the screen by 

applying negative Potential on the cylinder  

2. Electrons are accelerated through a potential difference of 1000 volts between 

filament and disc.  

3. A further potential of 500 volts is applied between slits to obtain a fine beam of 

electrons. 

4. After passing through the middle of the plates, the beam strikes the screen coated 

with ZnS, and a light spot is produced at "O."  

5. A magnetic field produced by two coils deflects the electron beam from "0" to 0/ on 

the screen. 
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6. An electric field is produced between two plates, such that the two fields cancel each 

other's effect and the spot comes back to 'O'.  

 
CALCULATIONS 

The magnetic field produced by Helmholtz coils is perpendicular to this velocity and 

produces a magnetic force that is transverse to both v and B: this provides the centripetal 

force that makes an electron move along the circular trajectory; the radius of this trajectory r 

can be found from 

𝑞 𝑣 𝐵 =  
𝑚 𝑣2

𝑟
 

𝑒 𝑣 𝐵 =  
𝑚 𝑣 𝑣

𝑟
 

𝑒  𝐵 =  
𝑚 𝑣

𝑟
 

𝑒

𝑚
  =  

 𝑣

𝐵 𝑟
……………(𝑖) 

DETERMINATION OF VELOCITY 

Work- kinetics energy Method-1 

The white ring inside the glass 
tube is the glow of a beam 
of electrons that ionize the gas 
molecules. The red coils of 
current-carrying wire produce a 
nearly uniform magnetic field, 
illustrating the circular path of 
charged particles in a uniform 
magnetic field. 
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When an electric field acts on a charge, the work done by the field is equal to the change in 

the charge's kinetic energy. 

1

2
𝑚 𝑣2   =  𝑞𝑉 

1

2
𝑚 𝑣2   =  𝑒𝑉 

𝑣  = √
2 𝑒𝑉

𝑚
  ……… . (𝑖𝑖) 

VELOCITY SELECTOR METHOD II 

An electric field is directed vertically downward, and the uniform magnetic field is 

applied in the direction perpendicular to the electric field. The two field forces on the 

electron are equal in magnitude, but opposite in direction (e) electron beam is passed through 

a crossed field region, then 

𝑒 𝑣 𝐵 = 𝑒 𝐸 

 𝑣 =  
𝐸

𝐵
………(𝑖𝑖𝑖) 

DETERMINATION OF RADIUS: 

Using Pythagoras theorem  

    (Hyp)2 = (Base)2 + (Perp)2 

  r2 = b2 + (r –a )2 

  r2 = b2 + r2 – 2ra + a2 

But “a” is very small; its square can be neglected.  

  2ra = b2 

    𝑟 =  
𝑏2

2𝑎
 ……………(𝑖𝑣)  
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GALVANOMETER 
DEFINITION 

It is a device that detects (or measures) small electric currents. 

 

CIRCUIT SYMBOL 

In an electrical circuit diagram, the galvanometer is represented by 

 

TYPES  

Two prevalent types of galvanometers are: 

1. moving-coil galvanometer 

2. moving magnet galvanometer.  

MOVING -COIL GALVANOMETER 

The French scientist D’ Arsonval developed the original form of the galvanometer. 

The modern form of the moving coil galvanometer is the result of the work of Dr. Edward 

Weston, who improved the original form. 
PRINCIPLE  

It works based on the principle of electromagnetic induction. When a coil carrying an 

electric current is positioned within an external magnetic field, it undergoes magnetic torque. 

The degree of deflection observed in the coil caused by this magnetic torque is directly 

proportional to the magnitude of the current flowing through the coil. 

CONSTRUCTION: 

1.  Coil: The key component of a Galvano meter is a coil of wire (usually wound around 

as an iron core) suspended within a magnetic field. The coil is mounted on a spindle so 

that it can rotate freely. 

2.  Magnet: A permanent magnet or an electromagnet is placed around the coil. The 

magnetic field lines from the magnet pass through the coil. 

3.  Spring: A delicate torsion spring is attached to the coil, providing a restoring torque 

when the coil is deflected. 

4.  Pointer: A thin pointer or needle is attached to the coil, allowing for deflection 

measurement. 
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WORKING 
  When a small electric current flows through the coil, it 

generates a magnetic field around it. This magnetic field interacts 

with the external magnetic field (provided by the permanent magnet 

or electromagnet) to exert a torque on the coil. 

The torque causes the coil to rotate, and the amount of rotation 

is proportional to the current passing through it. This rotation is 

indicated by the deflection of the pointer on a calibrated scale. 

The coil continues to rotate until the restoring torque from the 

spring equals the torque due to the current-induced magnetic field. 

At this point, the pointer comes to rest, and its position on the scale indicates the magnitude of 

the current. 
When a current passes through a galvanometer coil, it experiences a magnetic deflecting 
torque, which tends to rotate it.  

𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑛𝑔 𝑡𝑜𝑟𝑞𝑢𝑒 = 𝐵𝐼𝑁𝐴 cos 𝛼 
Where  

B = magnetic field strength  
  I  = current through the coil 
  N = number of turns 
  A = Area of coil 

  𝛼 = angle between ‘B’ and the plane of the coil. 

The coil is suspended in a radial magnetic field in which its plane is always parallel to the 

field, i.e., 𝛼  = 0o. 

𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑛𝑔 𝑡𝑜𝑟𝑞𝑢𝑒 = 𝐵𝐼𝑁𝐴 cos 00 

𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑛𝑔 𝑡𝑜𝑟𝑞𝑢𝑒 = 𝐵𝐼𝑁𝐴 (1) 

𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑛𝑔 𝑡𝑜𝑟𝑞𝑢𝑒 = 𝐵𝐼𝑁𝐴  
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This magnetic torque causes the coil to rotate, leading to the twisting of the phosphor 

bronze strip. Simultaneously, the spring (S) attached to the coil exerts a counter-torque, 

known as the storing torque   

𝑅𝑒𝑠𝑡𝑜𝑟𝑖𝑛𝑔 𝑡𝑜𝑟𝑞𝑢𝑒   𝛼  𝐴𝑛𝑔𝑙𝑒 𝑜𝑓 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 (𝜃)  

𝑅𝑒𝑠𝑡𝑜𝑟𝑖𝑛𝑔 𝑡𝑜𝑟𝑞𝑢𝑒 = 𝑘 𝜃 
where k is the stiffness constant of the spring. Representing a restoration of a couple of 

torque per unit twists of suspension fiber. It depends upon the nature of the suspension fiber 
For the equilibrium position of the coil, the restoring torque is equal to the deflecting torque. 

 𝑅𝑒𝑠𝑡𝑜𝑟𝑖𝑛𝑔 𝑡𝑜𝑟𝑞𝑢𝑒    =    𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑛𝑔 𝑡𝑜𝑟𝑞𝑢𝑒 

𝑘 𝜃 = 𝐵𝐼𝑁𝐴  

 𝜃 =
𝐵𝐼𝑁𝐴

𝑘
  

𝜃 =
𝐵𝑁𝐴

𝑘
  (𝐼) 

Where   
𝐵𝑁𝐴

𝑘
   is a constant for a given galvanometer 

𝜃 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡   (𝐼) 

𝜃 𝛼  𝐼 
The above expression shows that the deflection observed in the galvanometer is directly 

proportional to the current flowing through it. 

THE AMMETER 
DEFINITION  

An instrument used to measure currents is called an ammeter.  
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CONVERSION OF GALVANOMETER INTO AMMETER 

An ammeter is a modified form of a galvanometer. To convert a galvanometer into an 

ammeter, a suitable low-resistance device called a shunt is connected in parallel to it.  

 
 

WORKING 

The Shunt resistance should be adjusted so that when the current passes through the 

meter, most of the current gives off the full-scale deflection, and the remaining excess should 

pass through the shunt. 

DERIVATION 

Let  Rs    = Shunt resistance  

 Rg   = resistance of galvanometer  

 Ig   = current for full deflection  

 I      = current to be measured.  

    (I – Ig )   = current through shunt. 

The voltages across the galvanometer and shunt are equal due to their parallel connection. 

Hence, we can establish the following equation: 
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.The potential difference across shunt    = Potential difference across galvanometer 

             (𝐼 −   𝐼𝑔) 𝑅𝑠    =     𝐼𝑔 𝑅𝑔  

 𝑅𝑠    =    
 𝐼𝑔 𝑅𝑔

(𝐼 −   𝐼𝑔)
 

From this equation, a suitable value of shunt can be calculated.  

CONNECTION  

An ammeter is a very low-resistance device, always connected in series in a circuit. 
 

 
 
 
 
 
 
 
 
 

THE VOLTMETER 
 

DEFINITION  
An instrument used to measure potential difference is called a voltmeter. 

 
 

CONVERSION OF GALVANOMETER INTO VOLTMETER 
 

A voltmeter is a modified form of a galvanometer. A very high resistance is connected in 
series to convert a galvanometer into a voltmeter. This resistance is known as a multiplier.  

WORKING 
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To convert a galvanometer into a voltmeter, a very high resistance is connected in 

series to it. Most of the potential drop will occur across the multiplier. The series resistor Rx 
is chosen so that the current through the galvanometer deflects full scale when the desired 
full-scale voltage appears across the voltmeter. 

DERIVATION  

Let  XR  = multiplier resistance 

  gR  = galvanometer resistance  

  gI   = full deflection current  

  V  = Potential to be measured.  

The XR gR and are connected in series, so the same current 

gI flows through each. Hence  

potential difference across resistor( gR )   gV = gI gR  

the potential difference across the resistor ( XR )  XV = gI
XR  

The total potential difference V applies will equal the sum of the above potential differences. 

 Total potential difference = 








erGalvanometAcross
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
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      V      =       gI
XR     +     gI

gR  

      V      =     gI  ( XR + gR ) 

        
g

V


 =  XR + gR  

        
g

V


 - gR  =  XR    

      XR  = 
g

V


 - gR   

From this equation, a suitable value of Rx can be calculated.  
CONNECTION  

 

A voltmeter is a very high-resistance device that is always connected in parallel to the 
circuit.  

 
 
 

 

 


