1. A Ge diode has a voltage drop of 0.4 V when 12 mA flows through it. If the same 470 Ohm is used, what battery voltage is needed?

Data:

$$\overline{V_D} = 0.4 V$$

$$I = 12 \ m \ A = 12 \times 10^{-3}$$

$$R = 470 \Omega$$

$$V_{Battery} = ?$$

SOLUTION:

P.d across the resistor

$$V_R = I R$$

$$V_R = (12 \times 10^{-3})(470)$$

$$V_R = 5.64 V$$

P.d across the battery

$$V_{Battery} = V_R + V_D$$

$$V_{Battery} = (5.64) + (0.4)$$

$$V_{Battery} = 6.04 V$$

2. A semiconductor diode laser has a peak emission wavelength of 1.55 µm. Find its band gap in eV. (0.8 eV)

$$\lambda = 1.55 \,\mu m$$

$$\lambda = 1.55 \times 10^{-6} m$$

$$C = 3 \times 10^8 \ m/s$$

$$h = 6.629 \times 10^{-34} Js$$

$$\mathbf{E}_{Bandgap} = ?$$

SOLUTION:

Band gap energy is given by

$$\mathbf{E}_{B} = \frac{h C}{\lambda}$$

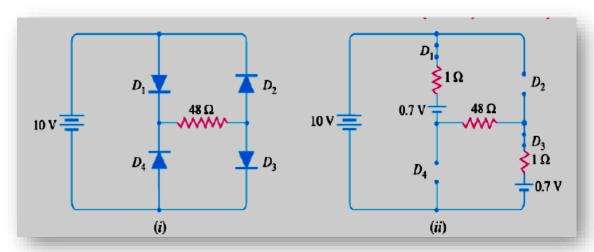
$$\mathbf{E}_B = \frac{(6.629 \times 10^{-34}) (3 \times 10^8)}{(1.55 \times 10^{-6})}$$

$$E_B = \frac{1.9887 \times 10^{-25}}{1.55 \times 10^{-6}}$$

$$E_B = 1.283 \times 10^{-19}$$

Band gap energy in eV

$$1 \, eV = 1.6 \times 10^{-19}$$


$$\mathbf{E}_B = \frac{1.283 \times 10^{-19}}{1.6 \times 10^{-19}}$$

$$\mathbf{E}_B = \mathbf{0.801} \, eV$$

UNIT - 22

SOLID STATE ELECTRONICS

3. Calculate the current through 48 Ω resistor in the circuit shown in Fig. (i). Assume the diodes to be of silicon and the forward resistance of each diode is 1 Ω .

SOLUTION:

For a diode D_1 and D_3 in forward bias and D_2 and D_4 in reverse bias:

The voltage drops across D_1 and D_3 is 0.7 V.

Thus, across D_1 and D_3 combined, the drop is 0.7 + 0.7 = 1.4 V.

The total resistance of D_1 and D_3 , due to forward resistance, is $1 \Omega + 1 \Omega = 2 \Omega$

Using Kirchhoff's voltage rule

$$10 - V_{D_1} - V_{48\Omega} - V_{D_3} = 0$$

$$10 - 0.7 - V_{48\Omega} - 0.7 = 0$$

$$10 - 1.4 - V_{48\Omega} = 0$$

$$8.6 - V_{48\Omega} = 0$$

$$V_{48\Omega} = 8.6 V$$

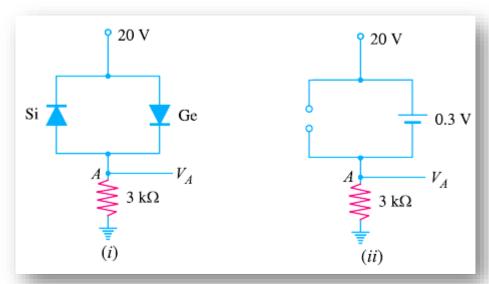
The total resistance in the circuit includes the series resistance from the diodes
The total resistance is

$$R_{total} = R_{D_1} + R_{48\Omega} + R_{D_3}$$

$$R_{total} = 1 + 48 + 1$$

$$R_{total} = 50 \,\Omega$$

We calculate the current **I** through the circuit


$$I = \frac{V_{48\Omega}}{R_{total}}$$

$$I = \frac{8.6}{50}$$

$$I = 0.172 A$$

UNIT - 22 SOLID STATE ELECTRONICS

4. Find the voltage VA in the circuit shown in Fig.(i). Use a simplified model.

Data:

The voltage V_{source} =20 V

Silicon (Si) Diode: reverse voltage drop approximately 0.7V. when non-

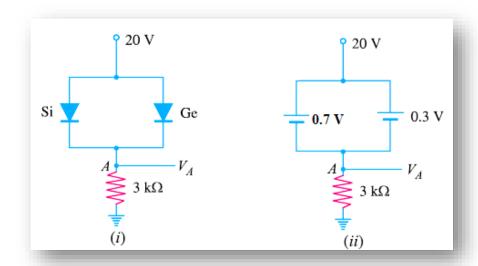
conducting

Germanium (Ge) Diode: Forward

voltage drop is

approximately 0.3 V when conducting.

Using Kirchhoff's voltage rule


$$20 - V_{Ge} - V_A = 0$$

$$20 - 0.3 - V_A = 0$$

$$19.7 - V_A = 0$$

$$V_A = 19.7 V$$

4(a). Find the voltage VA in the circuit shown in Fig.(i). Use a simplified model.

Data:

The voltage V_{source} =20 V

Silicon (Si) Diode: Forward voltage drop is approximately 0.7 V when conducting.

Germanium (Ge) Diode: Forward

voltage drop is

approximately 0.3 V when conducting.

Using Kirchhoff's voltage rule

$$20 - V_{Ge} - V_{Ge} - V_A = 0$$

$$20 - 0.3 - 0.7 - V_A = 0$$

$$20 - 1.0 - V_A = 0$$

$$19.0 - V_A = 0$$

$$V_A = 19.0 V$$

In a common base connection, I_E = 1 mA, I_C = 0.95 mA. Calculate the value of I_B . 5.

$$\overline{I_E} = 1 mA = 1 \times 10^{-3} A$$

$$I_c = 0.95 \, mA = 0.95 \times 10^{-3} A$$

$$I_R = ?$$

SOLUTIONS

The total emitter current I_E is the sum of the collector current I_{C} and base current I_{B}

$$I_E = I_C + I_B$$

$$1 \times 10^{-3} = 0.95 \times 10^{-3} + I_{R}$$

$$1 \times 10^{-3} - 0.95 \times 10^{-3} = I_B$$

$$0.05 \times 10^{-3} = I_B$$

$$0.05 m A = I_B$$

6. Find the value of
$$\beta$$
 if (i) $\alpha = 0.90$ (ii)) $\alpha = 0.98$ (iii)) $\alpha = 0.99$.

 β is given by the following formula:

$$\beta = \frac{\alpha}{1 - \alpha} \dots (i)$$

We can substitute the value of $\alpha = 0.90$ In equation (i)

$$\beta = \frac{0.90}{1 - 0.90}$$

$$\beta = \frac{0.90}{0.10}$$

$$\beta = 9$$

We can substitute the value of $\alpha = 0.98$ In equation (i)

$$\beta = \frac{0.98}{1 - 0.98}$$

$$\beta = \frac{0.98}{0.02} = 49$$

We can substitute the value of $\alpha = 0.99$ In equation (i)

$$\beta = \frac{0.99}{1 - 0.99}$$

$$\beta = \frac{0.98}{0.01} = 98$$

Calculate I_E in a transistor for which $\beta = 50$ and $I_B = 20 \,\mu\text{A}$. 7.

DATA

$$B = 50$$

$$I_B = 20 \,\mu\,A = 20 \, imes 10^{-6} \,A$$

$$\bar{I_E} = ?$$

The collector current $I_{\mathcal{C}}$ is given by:

$$I_C = \beta \times I_B$$

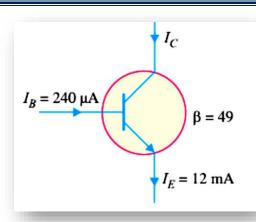
$$I_C = 50 \times 20 \times 10^{-6}$$

$$I_C = 1000 \times 10^{-6} = 1 \, m \, A$$

The emitter current I_E is given by:

$$I_E = I_C + I_B$$

$$I_E = 1000 \times 10^{-6} + 20 \times 10^{-6}$$


$$I_E = 1020 \times 10^{-6}$$

$$I_E = 1.020 \times 10^3 \times 10^{-6}$$

$$I_E = 1.020 \times 10^{-3}$$

$$I_E = 1.020 mA$$

8. Find the rating of α The transistor shown in Fig. Hence, determine the value of I_C using both α and the β rating of the transistor.

DATA

$$B = 49$$

$$I_B = 240 \,\mu\,A = 20 \,\times\,10^{-6}\,A$$

$$I_E = 12 m A$$

Using the relationship between α and

$$\alpha = \frac{\beta}{\beta + 1}$$

$$\alpha = \frac{49}{49 + 1}$$

$$\alpha = \frac{49}{50} = 0.98$$

The emitter current $I_{\mathcal{C}}$ is given by:

$$I_C = \beta \times I_B$$

$$I_C = 49 \times 240 \times 10^{-6}$$

$$I_C = 11760 \times 10^{-6}$$

$$I_C = 11.76 \times 10^3 \times 10^{-6}$$

$$I_C = 11.76 \times 10^{-3}$$

$$I_C = 11.76 \times mA$$