UNIT-23 DIGITAL ELECTRONICS

MULTIPLE CHOICE QUESTIONS

1.	The voltage level, typically associated with a 'low' stat (a) -5 volts (c) +5 volts	e in digital electronics, is: (b) 0 volts (d) +10 volts	
2.	In binary representation, the correspondence of '0' in (a) Low state (c) Open circuit	digital electronics is: (b) High state (d) Closed circuit	
3.	The primary purpose of a truth table in digital electronics is to: (a) Determine input voltage (b) Measure circuit resistance (c) Analyze output states based on input combinations (d) Calculate circuit power		
4.	Which logic gate combination produces an output of '(a) AND (c) XOR	1' when at least one input is '1'? (b) OR (d) NOT	
5.	In a circuit with a 2-input OR gate, the status of the la (a) OFF (c) Blinking	mp if either switch is closed (b) ON (d) Flickering	
6.	The behavior of a 2-input AND gate, when both switch (a) OFF (c) blinking	nes are closed, the Lamp is (b) ON (d) flickering	
7.	In a 3-input OR gate, if all inputs are '0' so the output (a) 1 (c) Undefined	will be: (b) 0 (d) Both A and B	
8.	If the input is '1', the output of a NOT gate will be: (a) 1 (c) Undefined	(b) 0 (d) Both A and B	
9.	In a 2-input XOR gate, when both inputs are' 1', then to (a) 1 (c) Undefined	the output will be (b) 0 (d) Both A and B	
10.	Which combination of logic gates is equivalent to an X (a) AND+ OR (c) OR+ NAND	(OR gate? (b) NOT+ NOR (d) AND+ NAND	

PROF: IMRAN HASHMI

UNIT-23 DIGITAL ELECTRONICS

EXAM PRACTICE MCQs

- What are the basic gates in the MOS logic family?
 - (a) NAND and NOR
 - (c) NAND and OR
- 2 The universal gate is _____
 - (a) NAND gate
 - (c) AND gate
- 3 The inverter is _____
 - (a) NOT gate
 - (c) AND gate
- 4 Identify the logic gate
 - (a) AND gate
 - (b) OR gate
 - (c) NAND gate
 - (d) NOR gate
- 5 The truth table for a two-input logic gate is as given below

A •—	\rightarrow	• •
В •—		• Q

$Y = A \cdot B$				
A	В	Y		
0	0	0		
0	1	0		
1	0	0		
4	1	-1		

Then the logic gate is

- (a) NAND gate
- (c) OR gate
- 6 The truth table for a two-input logic gate is as given below

Y = A + B					
A	В	Y			
0	0	0			
0	1	1			
1	0	1			
1	1	1			

- (a) NAND gate
- (c) OR gate

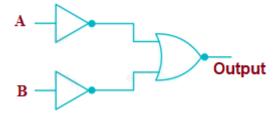
(b) AND gate

(b) AND and OR

(b) OR gate(d) NOT gate

(b) OR gate

(d) AND and NOR


(d) None of the above

(d) NOR gate

- (b) AND gate
- (d) NOR gate

UNIT-23 DIGITAL ELECTRONICS

Which logic gate is equivalent to these combinations of logic gates 7

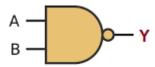
- (a) NOR
- (c) AND
- Which one is the Universal Gate?
- (a) OR gate
 - (c) NOR gate

- (b) NAND
- (d) OR
- (b) EX-OR gate
- (d) AND gate

Hint:

8

A Universal Gate is a gate by which every other gate can be realized.


AND, OR, NOT, etc., are basic gates.

NAND, NOR are the universal gates.

- 9 When both the input signals A and B of the NOR & NAND gate are connected together, The output of the resultant circuit will be equivalent to
 - (a) OR
 - (a) NOT

- (a) AND
- (a) None of the above

Identify the logic gate. 10

- (a) OR gate
- (c) NOT gate

- (b) AND gate
- (d) NAND gate

- The basic gates are: 11
 - (a) AND, NOR, and NOT gates
 - (b) AND, OR, and NOT gate
 - (c) AND and NOT gate
 - (d) OR and NOT gate
- 12 The logic gating function in DTL is performed by:
 - (a) Diode

(b) Inductor

(c) Transformer

- (d) Transistor
- 13 In Boolean algebra, the bar sign (-) indicates_

(c) OR operation (c) NOT operation

- (c) AND operation (c) None of the above
- When an input signal 1 is applied to a NOT gate, the output is 14

(a) 0 (c) Either 0 & 1 (b) 1

- (d) 00
- 15 If A = 1 and B = 0, then in terms of Boolean algebra, A + \overline{B} = (a) B
- (b) **A**

(c) A

(d) 0