
UNIT 18 MAGNETIC FIELDS NUMERICAL

1. An aluminum window has a width of 60 cm and a length of 85 cm, as shown in the figure.

- (a) When the window is closed, the magnetic flux density is 1.8×10^{-4} normal to the window.
- (b) Calculate the magnetic flux through the window.

Data:

$$\overline{W} = 60 \text{ cm} = 60 \times 10^{-2} m$$

$$L = 85 \text{ cm} = 85 \times 10^{-2} \text{ m}$$

$$A = 60 \times 10^{-2} \times 85 \times 10^{-2}$$

$$A=0.51\,m^2$$

$$B=1.8\times 10^{-4} T$$

To determine

$$\Phi_m = ?$$

SOLUTION:

$$\Phi = \overrightarrow{B} \cdot \overrightarrow{A}$$

$$\Phi = B A \cos \theta$$

$$\Phi_{max} = (1.8 \times 10^{-4}) (0.51) \cos 0^{0}$$

$$\Phi_{max} = (1.8 \times 10^{-4}) (0.51) (1)$$

$$\Phi_{max} = 9.18 \times 10^{-5} Wb$$

2. The poles of a horseshoe magnet measure 8 cm x 3.2cm. The magnetic flux density between the magnet poles is 80 mT. Outside of the magnet, the magnetic flux density is zero. Calculate the magnetic flux density between the poles of a magnet.

Data:

$$A = 8 \text{ cm} \times 3.2 \text{ cm}$$

$$A = 8 \times 10^{-2} \times 3.2 \times 10^{-2}$$

$$A = 2.56 \times 10^{-3} m^2$$

$$B = 80 mT$$

$$B = 80 \times 10^{-3} T$$

To determine

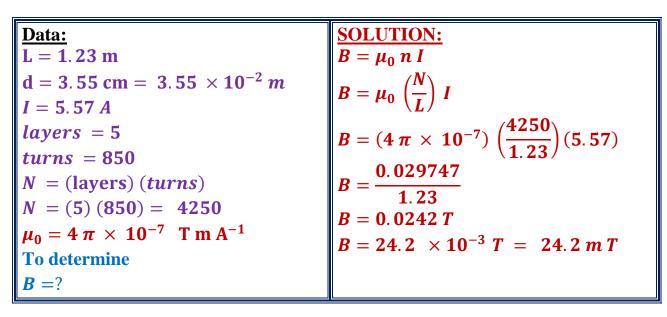
$$\Phi_m = ?$$

$$\overline{\boldsymbol{\Phi} = \overrightarrow{\boldsymbol{B}} \cdot \overrightarrow{\boldsymbol{A}}}$$

$$\Phi = B A \cos \theta$$

$$\Phi = B A \cos 90^0 = B A \cos(1)$$

$$\Phi = B A$$


$$\Phi_{max} = (80 \times 10^{-3}) (2.56 \times 10^{-3})$$

$$\Phi_{max} = 2.048 \times 10^{-4} wb$$

3. A wire 1.80 m long carries a current of 13.0 A and makes an angle of 35.0 $^{\circ}$ with a uniform magnetic field of magnitude B = 1.50 T. Calculate the magnetic force on the wire.

Data: SOLUTION: L = 1.8 m $F = B I L \sin \theta$ I = 13.0 A $F = (1.50) (13.0) (1.8) \sin(35.0^0)$ B = 1.50 T F = (1.50) (13.0) (1.8) (0.5735) To determine F = 20.13 N

4. A solenoid has length L = 1.23 m and inner diameter d = 3.55 cm, and it carries a current I = 5.57 A. It consists of five close-packed layers, each with 850 turns along length L. What is B at its center?

5. A moving coil galvanometer has a resistance of 50 $\,\Omega$ and it gives full scale deflection at 4 mA current. A voltmeter is made using this galvanometer and a 5 K $\,\Omega$ resistance. Calculate the maximum voltage that can be measured using this voltmeter.

Data:
R_g = 50 Ω
 SOLUTION:
R_X =
$$\frac{V}{I_g} - R_g$$

 I_g = 4 mA = 4 × 10⁻³ A
 $\frac{V}{I_g} - R_g$

 R_X = 5 k Ω = 5000 Ω
 $\frac{V}{4 \times 10^{-3}} - 50$

 To determine
 $\frac{V}{V} = \frac{V}{V}$

 V = ?
 $\frac{V}{V} = \frac{V}{V}$

6. Compute the magnitude of the magnetic field of a long, straight wire carrying a current of 1 A at a distance of 1m from it. Compare it with Earth's magnetic field.

Data: I = 1 A

$$r = 1 m$$

r = 1 m

$$\mu_0 = 4 \, \pi \, \times \, 10^{-7} \, \text{T m A}^{-1}$$

 $B_E = 25 \,\mu\,T = 25 \times 10^{-6} \,T$

To determine

 $B_W = ?$

$$B_W = \frac{\mu_0 I}{2 \pi r}$$

$$B_W = \frac{(4\pi \times 10^{-7})(1)}{2\pi(1)}$$

$$B_W = \frac{(4\pi \times 10^{-7})}{2\pi}$$

$$B_W = \frac{(4 \pi \times 10^{-7})}{2}$$

$$B_W = 2 \times 10^{-7} T$$

Compare B_E With Earth's magnetic field

 $\boldsymbol{B}_{\boldsymbol{E}}$

$$\frac{B_E}{B_W} = \frac{25 \times 10^{-6}}{2 \times 10^{-7}}$$

$$\frac{B_E}{B_W} = 125$$

$$B_E = 125 B_W$$

The magnetic field of Earth is 125 times that of a wire's magnetic field.

7. Find the current in a long straight wire that would produce a magnetic field twice the strength of the Earth's at a distance of 5.0cm from the wire. (Magnetic field of Earth $=5.0x10^{-5}$ T).

Data:

$$I = 1 A$$

$$r = 5 \text{ cm} = 5 \times 10^{-2} \text{ m}$$

$$\mathbf{B}_E = \mathbf{5} \times \mathbf{10}^{-5} \, \mathbf{T}$$

$$B = 2 B_E$$

$$B = 2 \times 5 \times 10^{-5} = 10 \times 10^{-5} T$$

$$\mu_0 = 4 \pi \times 10^{-7} \text{ T m A}^{-1}$$

To determine

$$I = ?$$

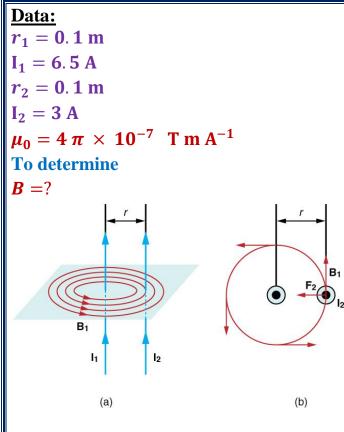
$$\frac{\mu_0 I}{\mu_0 I}$$

$$B \times 2\pi r$$

$$B = \frac{\mu_0 I}{2 \pi r}$$

$$I = \frac{B \times 2 \pi r}{\mu_0}$$

$$I = rac{10 \times 10^{-5} \times 2 (\pi) (5 \times 10^{-2})}{4 \pi \times 10^{-7}}$$


$$-4\pi \times 10^{-6}$$

$$I=\frac{3\times10}{2\times10^{-7}}$$

$$I = 25 A$$

UNIT 18 MAGNETIC FIELDS NUMERICAL

8. What is the flux density at a distance of 0.1 m in air from along straight conductor carrying a current of 6.5 A. Calculate the force per unit length on a similar parallel conductor at a distance of 0.1m from the first and carrying a current of 3 A.

$$\frac{\text{SOLUTION:}}{B_1} = \frac{\mu_0 I_1}{2 \pi r_1}
B_1 = \frac{(4 \pi \times 10^{-7}) (6.5)}{2 \pi (0.1)}
B_1 = \frac{1.3 \times 10^{-6}}{0.1}
B_1 = 1.3 \times 10^{-5} T$$

$$F_2 = B_1 I_2 L
F_2 = \left(\frac{\mu_0 I_1}{2 \pi r_1}\right) I_2
\frac{F_2}{L} = \frac{\mu_0 I_1 I_2}{2 \pi r_1}
\frac{F_2}{L} = \frac{(4 \pi \times 10^{-7}) (6.5) (3)}{2 \pi (0.1)}
\frac{F_2}{L} = 3.9 \times 10^{-5} T$$

WORKED EXAMPLES

A current-carrying conductor of a certain length placed at 90° to the magnetic field experiences a force F. What force will be if the current is increased four times, the length is halved, and the magnetic field is tripled?

$$\frac{\text{Data:}}{I_1 = 4I \text{ A}}$$

$$I_1 = \frac{L}{I_1}$$

$$B_1 = 3 B$$

To determine

$$F_1 = ?$$

SOLUTION:

The force on a current-carrying wire is

$$F = BIL$$

Now.

$$F_1 = B_1 I_1 L_1$$

$$F_1 = (3 B) (4 I) \left(\frac{L}{2}\right)$$

$$F_1 = 6F$$

2 A conductor of length 50cm carrying a current of 5 A is placed perpendicular to a magnetic field of induction 2 x 10⁻³ T. Find the force on the conductor

$$L = 50 \text{ cm} = 50 \times 10^{-2} m$$

$$I = 5 A$$

$$B=2\times10^{-3}\,T$$

To determine

$$F = ?$$

SOLUTION:

The force on a current-carrying wire is

$$F = BIL$$

$$F = (2 \times 10^{-3}) (5) (50 \times 10^{-2})$$

$$F = 5 \times 10^{-3} N$$

Calculate the magnetic flux through a rectangular loop with dimensions 5 cm x 10 cm 3 placed in a magnetic field of strength 0.2 T. The loop is oriented such that the magnetic field lines are perpendicular to the plane of the loop.

Data:

$$A = 5 \text{ cm} \times 10 \text{ cm}$$

$$A = 5 \times 10^{-2} \mathrm{m} \times 10 \times 10^{-2} \mathrm{m}$$

$$A = 50 \times 10^{-4} \text{ m}$$

$$B = 0.2 T$$

To determine

$$\Phi = ?$$

$$\Phi = B A \cos \theta$$

$$\Phi = (0.2) (50 \times 10^{-4}) \cos 0^{0}$$

$$\Phi = (0.2) (50 \times 10^{-4}) (1)$$

$$\boldsymbol{\Phi} = \mathbf{1} \times \mathbf{10}^{-3} \, Wb$$

UNIT 18 MAGNETIC FIELDS NUMERICAL

4 Suppose we have a solenoid with 500 turns per meter and a current of 2.5 amperes flowing through it. Calculate the magnetic flux density inside the solenoid.

Data:

$$number\ of\ turns\ (N) = 500$$

$$L=1 \text{ m}$$

$$I = 2.5 A$$

$$\mu_0 = 4 \pi \times 10^{-7}$$

To determine

$$B = ?$$

SOLUTION:

$$B = \mu_0 n I$$

$$B = \mu_0 \left(\frac{N}{L}\right) I$$

$$B = (4 \pi \times 10^{-7}) \left(\frac{500}{1}\right) (2.5)$$

$$B = 1.57 \times 10^{-3} T$$

Suppose we have a toroid with 1000 turns and a current of 3 amperes flowing through it. The toroid has a circular cross-section with a radius of 0.1 meters. Calculate the magnetic flux density inside the toroid.

Data:

$$\overline{num}ber\ of\ turns\ (N) = 1000$$

$$I = 3 A$$

$$r = 0.1 \text{ m}$$

$$\mu_0 = 4 \pi \times 10^{-7}$$

To determine

$$\boldsymbol{B} = ?$$

SOLUTION

$$B = \frac{\mu_0 N}{2 \pi n}$$

$$B = \frac{(4 \pi \times 10^{-7}) (1000) (3)}{2 \pi (0.1)}$$

$$B = 1.57 \times 10^{-3} T$$

A moving coil galvanometer of resistance 100 Ω is used as an ammeter using a Shunt of 0.1 Ω . The maximum deflection current in the galvanometer is 100 μ A. Find the current in the circuit so that the ammeter gives maximum deflection.

<u>Data:</u>

$$R_g = 100 \Omega$$

$$\mathbf{R}_{S} = \mathbf{0}.\mathbf{1}\,\Omega$$

$$I_g = 100 \ \mu A = 100 \times 10^{-6} \ A$$

To determine

$$I = ?$$

$$\overline{R_S = \frac{R_g \ I_g}{I - I_g}}$$

$$(I - I_g) R_S = R_g I_g$$

$$I - I_g = \frac{R_g I_g}{R_S}$$

$$I = \frac{R_g I_g}{R_S} + I_g$$

$$I = \frac{(100) (100 \times 10^{-6})}{0.1} + 100 \times 10^{-6}$$

$$I = 0.1 + 100 \times 10^{-6}$$

$$I = 0.1001 A \text{ or } 100.1 mA$$

7 A galvanometer coil of 40 Ω resistance shows full-range deflection for a current of 4 mA. How can this galvanometer be converted into a voltmeter of range 0- 12V?

Data:

$$\overline{R_g} = 40 \Omega$$
 $I_g = 4 \text{ mA} = 4 \times 10^{-3} A$
 $V = 12 \text{ V}$

To determine

$$\mathbf{R}_X = ?$$

$$\frac{\text{SOLUTION:}}{R_X = \frac{V}{I_g} - R_g}$$

$$R_X = \frac{12}{4 \times 10^{-3}} - 40$$

$$R_X = \frac{12}{4 \times 10^{-3}} - 40$$

$$R_X = 3000 - 40$$

$$R_X = 2960 \Omega$$

8 A 300-volt voltmeter has a total resistance of 20,000 ohms. What additional series resistance must be connected to it to increase its range to 500 volts?

Data:

$$\overline{V_g} = 300 \text{ V}$$

$$\mathbf{R}_g = \mathbf{20} \ \mathbf{000} \ \Omega$$

$$V = 500 \text{ V}$$

To determine

$$\mathbf{R}_X = ?$$

$$I_g = \frac{V_g}{R_g}$$

$$I_g = \frac{300}{20000} = 0.015 A$$

$$\frac{\text{SOLUTION:}}{R_X = \frac{V}{I_g} - R_g}$$

$$R_X = \frac{500}{0.015} - 20\ 000$$

$$R_X = 33333.33 - 20000$$

$$R_X = 13333.33 \,\Omega$$