UNIT 26 ATOMIC PHYSICS

MULTIPLE CHOICE QUESTIONS

1.	Atom (a) (c)	nic spectra are also known as: Discrete spectra Emission spectrum	(b) (d)	Line spectra Continuous spectra
2.	The (a) (c)	ratio of kinetic energy to total energy for a 1: -1 1:2	an elec (b) (d)	tron in a Bohr orbit is: 2:3 2:1
3.	The (a) (c)	Bohr radius increases as the principal quaincreases remains constant	antum (b) (d)	number: decreases oscillates
4.	Lase (a) (c)	er beams consist of: Highly coherent electrons Highly coherent phonons	(b) (d)	Highly coherent photons Highly coherent neutrons
5.	The (a) (c)	ruby laser is an example of: Optical pumping Chemical pumping	(b) (d)	Electrical pumping Thermal pumping
6.	Lase (a) (c)	r action requires a medium with at least: Three energy levels Two energy levels	(d)	(b) Four energy levels Five energy levels
7.	Popu (a) (c) 8. (a) (c)	ulation inversion occurs in: Active medium Gaseous medium X-rays transferto metals. Energy Pressure	(b) (d) (b) (d)	Passive medium Vapour medium Force Momentum
9.		ys are deflected by: Magnetic fields Gravitational fields	(b) (d)	Electric fields No fields
10.	Douk (a) (b) (c) (d)	oling the voltage of an X-ray tube: Halves the intensity Keeps the intensity unchanged Doubles the intensity Quadruples the intensity		

PROF: IMRAN HASHMI

UNIT 26 ATOMIC PHYSICS

EXAM PRACTICE MCQs

1	Find the shortest wavelength present in the radiation from an x-ray machine whose accelerating potential is 50000 V.						
	(a)	0.0248 Å	(b)	0.248 Å			
	(c)	2.48 Å	(d)	24. 8 Å			
2	Which of the following spectral lines of X-rays is more intense?						
	(a)	K_{α}	(b)	K_{eta}			
	(c)	K_{ν}	(d)	none of these			
3.	The food industry uses X-ray for						
		ecking Purity of food	b) Ste	rilizing food			
	c) Bre	ak it into smaller pieces		es not uses			
4	X-rays can't penetrate through a sheet of:						
	(a)	Wood	(b)	Paper			
	(c)	Aluminum	(d)	Lead			
5 The wavelength of characteristic X-rays depends upon—				n			
	(a)	Size of target	(b)	Mass of target			
	(c)	Temperature of target	(d)	Atomic number of target			
6	The potential difference applied to an X-ray tube is 5 kV, and its current is 3.2 mA. The						
	number of electrons striking the target per second is:						
	(a)	5×10^{16} electrons	(b)				
	(c)	2×10^{16} electrons	(d)	5×10^{16} electrons			
7.	Select	the scientist connected with the discove	ry of X-	-rays.			
	(a)	Einstein	(b)	Rontgen			
	(c)	Faraday	(d)	Archimedes			
8	Which of the following properties is/are possible in the case of X-rays?						
	(a)	Polarization	(b)	Diffraction			
	(c)	Interference	(d)	All of the above			
9	If the potential difference applied to an X-ray tube is doubled while keeping the separation						
	between the filaments and the target the same, what will happen to the cutoff wavelength?						
	(a)	Will remains same					
	(b)	Will be doubled					
	(c)	Will be halved					
4.0	(d) Will be four times the original wavelength						
10		of the following wavelengths of x-rays h					
	(a)	2 Å	(b)	4 Å			
	(c)	8 Å	(d)	16 Å			
Hint	, λ	$\alpha \frac{1}{\text{penetrating power}}$					
	penetrating power						
11	Which of the following is a unique property of laser?						
	(a)	Directional	(b)	Speed			
	(c)	Coherence	(d)	Wavelength			

UNIT 26 ATOMIC PHYSICS

12	Which of the following is an example of optical pumping?								
	(a) Ruby laser	(b)	Helium-Neon laser						
	(c) Semiconductor laser	(d)	Dye laser						
13	The lifetime of an electron in a metastable state is of the order of								
	(a) 10^{-9} S.	(b)	10 ⁻³ S.						
	(c) 10^{-8} S.	(d)	10 ⁻⁷ S.						
14	Which one of the following lasers has the highest efficiency?								
	(a) Ruby	(b)	diode laser						
	(c) He-Ne	(d)	Carbon dioxide						
15	In He-Ne laser, the lasing action is produced by								
	(a) He-Ne both	(b)	Ne only						
	(c) Electrons of He	(d)	none of above						
16	The velocity of laser light is,	(4)	nene el azere						
	(a) Less than ordinary	(b) more than ordinary light							
	(c) equal to ordinary light	. ,	fferent for different colours						
17	In Ruby LASER, the host crystal is	(a) Di	nerent for uncrent colours						
17	(a) Al ₂ O ₃	(b)	MnO_2						
	(c) CaCO ₃	(d)	Nacl						
18	The image produced by holography is	(u)	Naci						
10	(a) 1-dimensional	(h)	2-dimensional						
	()	(p)	4-dimension						
19		(d)	4-0111161151011						
19	The first laser was invented in May, 1960 by (a) Theodore Maiman	(b)	Maxwell						
		` '	V. Raman						
20	\ <i>\</i>	` '	v. Kalliali						
20	The state of population inversion is also known		Negative temperature etate						
	(a) Positive temperature state	(p)	Negative temperature state None of the above						
21	(c) temperature Equilibrium state	(d)							
Z I	According to Bohr's model of a hydrogen atom, the relation between the principal quantum number n and the radius of stable orbit:								
	(a) $r \alpha \frac{1}{r}$	(b)	$r \alpha \frac{1}{}$						
	$\binom{n}{n}$		$r \alpha \frac{1}{n^2}$						
	(c) $r \alpha n$	(d)	$r \alpha n^2$						
22	The Bohr radius is equal to:								
	(a) $r = 5.3 \times 10^{-11}$		(b) $r = 0.53 \times 10^{-11}$						
	(c) $r = 5.3 \times 10^{-12}$	(d)	(b) $r = 0.53 \times 10^{-11}$ $r = 0.53 \times 10^{10}$						
23	If the radius of the 1st orbit of hydrogen is 'r', the	en the	radius of the 3rd orbit of hydrogen is						
20			r						
	(a) $3r$ (b) $6r$ (c)	9 r	(d) $\frac{1}{3}$						
24	An electron projected perpendicular to a uniform magnetic field B moves in a circle. If								
	Bohr's quantization is applicable, then the radius of the electronic orbit in the first excited								
	state is:								
	(a) $\sqrt{\frac{2 n}{n}}$	(b)	$\sqrt{\frac{4 h}{\pi e B}}$						
	$\sqrt{\pi} e B$	(D)	$\sqrt{\pi} e B$						
	<u></u>								
	(a) $\sqrt{\frac{2 h}{\pi e B}}$ (c) $\sqrt{\frac{h}{\pi e B}}$	(d)	<u> </u>						
		(-)	$\sqrt{\frac{n e B}{2 \pi e B}}$						
25	The energy of an electron in the second shell of the hydrogen atom is								
	(a) +3.4 eV `	(b) -	3.4 eV						

(c) -13.6 eV

(d) + 13.6 eV